首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
For any \(p\in (0,\,1]\), let \(H^{\Phi _p}(\mathbb {R}^n)\) be the Musielak–Orlicz Hardy space associated with the Musielak–Orlicz growth function \(\Phi _p\), defined by setting, for any \(x\in \mathbb {R}^n\) and \(t\in [0,\,\infty )\),
$$\begin{aligned}&\Phi _{p}(x,\,t)\\&\quad := {\left\{ \begin{array}{ll} \displaystyle \frac{t}{\log {(e+t)}+[t(1+|x|)^n]^{1-p}}&{} \quad \text {when}\ n(1/p-1)\notin \mathbb N \cup \{0\},\\ \displaystyle \frac{t}{\log (e+t)+[t(1+|x|)^n]^{1-p}[\log (e+|x|)]^p}&{} \quad \text {when}\ n(1/p-1)\in \mathbb N\cup \{0\}, \end{array}\right. } \end{aligned}$$
which is the sharp target space of the bilinear decomposition of the product of the Hardy space \(H^p(\mathbb {R}^n)\) and its dual. Moreover, \(H^{\Phi _1}(\mathbb {R}^n)\) is the prototype appearing in the real-variable theory of general Musielak–Orlicz Hardy spaces. In this article, the authors find a new structure of the space \(H^{\Phi _p}(\mathbb {R}^n)\) by showing that, for any \(p\in (0,\,1]\), \(H^{\Phi _p}(\mathbb {R}^n)=H^{\phi _0}(\mathbb {R}^n) +H_{W_p}^p({{{\mathbb {R}}}^n})\) and, for any \(p\in (0,\,1)\), \(H^{\Phi _p}(\mathbb {R}^n)=H^{1}(\mathbb {R}^n) +H_{W_p}^p({{{\mathbb {R}}}^n})\), where \(H^1(\mathbb {R}^n)\) denotes the classical real Hardy space, \(H^{\phi _0}({{{\mathbb {R}}}^n})\) the Orlicz–Hardy space associated with the Orlicz function \(\phi _0(t):=t/\log (e+t)\) for any \(t\in [0,\infty )\), and \(H_{W_p}^p(\mathbb {R}^n)\) the weighted Hardy space associated with certain weight function \(W_p(x)\) that is comparable to \(\Phi _p(x,1)\) for any \(x\in \mathbb {R}^n\). As an application, the authors further establish an interpolation theorem of quasilinear operators based on this new structure.
  相似文献   

2.
In this paper, we will prove (resp. study) the Baire generic validity of the upper-Hölder (resp. iso-Hölder) mixed wavelet leaders multifractal formalism on a product of two critical Besov spaces \(B_{t_{1}}^{\frac{m}{t_{1}},q_{1}}(\mathbb {R}^m) \times B_{t_{2}}^{\frac{m}{t_{2}},q_{2}}(\mathbb {R}^m)\), for \(t_1,t_2>0\), \(q_1 \le 1\) and \(q_2 \le 1\). Contrary to product spaces \(B_{t_{1}}^{s_{1},\infty }(\mathbb {R}^m) \times B_{t_{2}}^{s_{2},\infty }(\mathbb {R}^m) \) with \(s_{1} > \frac{m}{t_{1}}\) and \(s_{2} >\frac{m}{t_{2}}\) (Ben Slimane in Mediterr J Math, 13(4):1513–1533, 2016) and \((B_{t_{1}}^{s_{1},\infty }(\mathbb {R}^m) \cap C^{\gamma _{1}}(\mathbb {R}^m)) \times (B_{t_{2}}^{s_{2},\infty }(\mathbb {R}^m) \cap C^{\gamma _{2}}(\mathbb {R}^m)\) with \(0<\gamma _{1}<s_{1}<\frac{m}{t_{1}}\) and \(0<\gamma _{2}<s_{2}<\frac{m}{t_{2}}\) (Ben Abid et al. in Mediterr J Math, 13(6):5093–5118, 2016), all pairs of functions in the obtained generic set are not uniform Hölder. Nevertheless, the characterization of the upper bound of the Hölder exponent by decay conditions of local wavelet leaders suffices for our study.  相似文献   

3.
Let L be a self-adjoint positive operator on \(L^2(\mathbb {R}^n)\). Assume that the semigroup \(e^{-tL}\) generated by \(-L\) satisfies the Gaussian kernel bounds on \(L^2(\mathbb {R}^n)\). In this article, we study weighted local Hardy space \(h_{L,w}^{1}(\mathbb {R}^n)\) associated with L in terms of the area function characterization, and prove their atomic characters. Then, we introduce the weighted local BMO space \(\mathrm{bmo}_{L,w}(\mathbb {R}^n)\) and prove that the dual of \(h_{L,w}^{1}(\mathbb {R}^n)\) is \(\mathrm{bmo}_{L,w}(\mathbb {R}^n)\). Finally a broad class of applications of these results is described.  相似文献   

4.
We extended the known result that symbols from modulation spaces \(M^{\infty ,1}(\mathbb {R}^{2n})\), also known as the Sjöstrand’s class, produce bounded operators in \(L^2(\mathbb {R}^n)\), to general \(L^p\) boundedness at the cost of loss of derivatives. Indeed, we showed that pseudo-differential operators acting from \(L^p\)-Sobolev spaces \(L^p_s(\mathbb {R}^n)\) to \(L^p(\mathbb {R}^n)\) spaces with symbols from the modulation space \(M^{\infty ,1}(\mathbb {R}^{2n})\) are bounded, whenever \(s\ge n|1/p-1/2|.\) This estimate is sharp for all \(1< p<\infty \).  相似文献   

5.
In this article, we consider the following fractional Hamiltonian systems:
$$\begin{aligned} {_{t}}D_{\infty }^{\alpha }({_{-\infty }}D_{t}^{\alpha }u) + \lambda L(t)u = \nabla W(t, u), \;\;t\in \mathbb {R}, \end{aligned}$$
where \(\alpha \in (1/2, 1)\), \(\lambda >0\) is a parameter, \(L\in C(\mathbb {R}, \mathbb {R}^{n\times n})\) and \(W \in C^{1}(\mathbb {R} \times \mathbb {R}^n, \mathbb {R})\). Unlike most other papers on this problem, we require that L(t) is a positive semi-definite symmetric matrix for all \(t\in \mathbb {R}\), that is, \(L(t) \equiv 0\) is allowed to occur in some finite interval \(\mathbb {I}\) of \(\mathbb {R}\). Under some mild assumptions on W, we establish the existence of nontrivial weak solution, which vanish on \(\mathbb {R} \setminus \mathbb {I}\) as \(\lambda \rightarrow \infty ,\) and converge to \(\tilde{u}\) in \(H^{\alpha }(\mathbb {R})\); here \(\tilde{u} \in E_{0}^{\alpha }\) is nontrivial weak solution of the Dirichlet BVP for fractional Hamiltonian systems on the finite interval \(\mathbb {I}\). Furthermore, we give the multiplicity results for the above fractional Hamiltonian systems.
  相似文献   

6.
Motivated by applications in the field of shape analysis, we study reparametrization invariant, fractional order Sobolev-type metrics on the space of smooth regular curves \(\mathrm {Imm}(\mathrm {S}^{1},\mathbb {R}^d)\) and on its Sobolev completions \({\mathcal {I}}^{q}(\mathrm {S}^{1},{\mathbb {R}}^{d})\). We prove local well-posedness of the geodesic equations both on the Banach manifold \({\mathcal {I}}^{q}(\mathrm {S}^{1},{\mathbb {R}}^{d})\) and on the Fréchet-manifold \(\mathrm {Imm}(\mathrm {S}^{1},\mathbb {R}^d)\) provided the order of the metric is greater or equal to one. In addition we show that the \(H^s\)-metric induces a strong Riemannian metric on the Banach manifold \({\mathcal {I}}^{s}(\mathrm {S}^{1},{\mathbb {R}}^{d})\) of the same order s, provided \(s>\frac{3}{2}\). These investigations can be also interpreted as a generalization of the analysis for right invariant metrics on the diffeomorphism group.  相似文献   

7.
We consider the Cauchy problem for the generalized Zakharov–Kuznetzov equation \(\partial _t u + \partial _x \Delta u = \partial _x ( u^{m+1} )\) on two or three space dimensions. We mainly study the two dimensional case and give the local well-posedness and the small data global well-posedness in the modulation space \(M_{2,1}(\mathbb {R}^2)\) for \(m \ge 4\). Moreover, for the quartic case (namely, \(m = 3\)), the local well-posedness in \( M_{2,1}^{1/4}(\mathbb {R}^2)\) is given. The well-posedness on three dimensions is also considered.  相似文献   

8.
In this paper, we study the steady-state Navier–Stokes equations in \(\mathbb {R}^3\). First, we establish the existence of very weak solution in \(\varvec{L}^p(\mathbb {R}^3)\) with \(3/2< p < +\infty \) under smallness conditions on the data. A uniqueness result is also given in case the data belong to \(\mathbb {L}^r(\mathbb {R}^3)\cap \mathbb {L}^{3/2}(\mathbb {R}^3)\) with \(3/2<r<3\). We also discuss the case where the data are not necessarily small. In particular, these results enhance those obtained by Bjorland et al. (Commun Partial Differ Equ 26:216–246, 2011), and are in agreement with those obtained by Kim and Kozono (J Math Anal Appl 395(2):486–495, 2012). Second, we prove a result of existence and uniqueness of weak solution in the weighted Sobolev space \(\varvec{W}_0^{1,p}(\mathbb {R}^3)\cap \varvec{W}_0^{1,\,3/2}(\mathbb {R}^3)\) in case of small external forces given by \(\mathrm{div}\mathbb {F}\) with \(\mathbb {F} \in \mathbb {L}^p(\mathbb {R}^3)\cap \mathbb {L}^{3/2}(\mathbb {R}^3)\) and \(1<p<3\).  相似文献   

9.
In this paper, we extend the well-known result “the predual of Hardy space \(H^1\) is VMO” to the product setting, associated with differential operators. Let \(L_i\), \(i = 1, 2\), be the infinitesimal generators of the analytic semigroups \(\{e^{-tL_i}\}\) on \(L^2({\mathbb {R}})\). Assume that the kernels of the semigroups \(\{e^{-tL_i}\}\) satisfy the Gaussian upper bounds. We introduce the VMO spaces VMO\(_{L_1, L_2}(\mathbb {R}\times \mathbb {R})\) associated with operators \(L_1\) and \(L_2\) on the product domain \(\mathbb {R}\times \mathbb {R}\), then show that the dual space of VMO\(_{L_1, L_2}(\mathbb {R}\times \mathbb {R})\) is the Hardy space \(H^1_{L_1^*, L_2^*}(\mathbb {R}\times \mathbb {R})\) associated with the adjoint operators \(L^*_1\) and \(L^*_2\).  相似文献   

10.
Let \({\mathbb {K}(\mathbb {R}^{d})}\) denote the cone of discrete Radon measures on \(\mathbb {R}^{d}\). There is a natural differentiation on \(\mathbb {K}(\mathbb {R}^{d})\): for a differentiable function \(F:\mathbb {K}(\mathbb {R}^{d})\to \mathbb {R}\), one defines its gradient \(\nabla ^{\mathbb {K}}F\) as a vector field which assigns to each \(\eta \in \mathbb {K}(\mathbb {R}^{d})\) an element of a tangent space \(T_{\eta }(\mathbb {K}(\mathbb {R}^{d}))\) to \(\mathbb {K}(\mathbb {R}^{d})\) at point η. Let \(\phi :\mathbb {R}^{d}\times \mathbb {R}^{d}\to \mathbb {R}\) be a potential of pair interaction, and let μ be a corresponding Gibbs perturbation of (the distribution of) a completely random measure on \(\mathbb {R}^{d}\). In particular, μ is a probability measure on \(\mathbb {K}(\mathbb {R}^{d})\) such that the set of atoms of a discrete measure \(\eta \in \mathbb {K}(\mathbb {R}^{d})\) is μ-a.s. dense in \(\mathbb {R}^{d}\). We consider the corresponding Dirichlet form
$$\mathcal{E}^{\mathbb{K}}(F,G)={\int}_{\mathbb K(\mathbb{R}^{d})}\langle\nabla^{\mathbb{K}} F(\eta), \nabla^{\mathbb{K}} G(\eta)\rangle_{T_{\eta}(\mathbb{K})}\,d\mu(\eta). $$
Integrating by parts with respect to the measure μ, we explicitly find the generator of this Dirichlet form. By using the theory of Dirichlet forms, we prove the main result of the paper: If d ≥ 2, there exists a conservative diffusion process on \(\mathbb {K}(\mathbb {R}^{d})\) which is properly associated with the Dirichlet form \(\mathcal {E}^{\mathbb {K}}\).
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号