首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Recently, Zhu et al. (2020) proposed a kind of rotation-Camassa–Holm equation. In this paper, we study the question of nonexistence of periodic peaked traveling wave solution for rotation-Camassa–Holm equation. Indeed, rotation-Camassa–Holm equation has no nontrivial periodic Camassa–Holm peaked solution unlike Camassa–Holm equation, modified Camassa–Holm equation, Novikov equation.  相似文献   

2.
We derive a new four-dimensional partial differential equation with the isospectral Lax representation by shrinking the symmetry algebra of the reduced quasi-classical self-dual Yang–Mills equation and applying the technique of twisted extensions to the obtained Lie algebra. Then we find a recursion operator for symmetries of the new equation and construct a Bäcklund transformation between this equation and the four-dimensional Martínez Alonso–Shabat equation. Finally, we construct extensions of the integrable hierarchies associated to the hyper-CR equation for Einstein–Weyl structures, the reduced quasi-classical self-dual Yang–Mills equation, the four-dimensional universal hierarchy equation, and the four-dimensional Martínez Alonso–Shabat equation.  相似文献   

3.
We show that the Benjamin–Bona–Mahoney (BBM) equation with power law nonlinearity can be transformed by a point transformation to the combined KdV–mKdV equation, that is also known as the Gardner equation. We then study the combined KdV–mKdV equation from the Lie group-theoretic point of view. The Lie point symmetry generators of the combined KdV–mKdV equation are derived. We obtain symmetry reduction and a number of exact group-invariant solutions for the underlying equation using the Lie point symmetries of the equation. The conserved densities are also calculated for the BBM equation with dual nonlinearity by using the multiplier approach. Finally, the conserved quantities are computed using the one-soliton solution.  相似文献   

4.
The tanh method and the extended tanh method are used for handling the Zhiber–Shabat equation and the related equations: Liouville equation, sinh-Gordon equation, Dodd–Bullough–Mikhailov (DBM) equation, and Tzitzeica–Dodd–Bullough equation. Travelling wave solutions of different physical structures are formally derived for each equation.  相似文献   

5.
The purpose of this paper is to establish Bogoliubov averaging principle of stochastic reaction–diffusion equation with a stochastic process and a small parameter. The solutions to stochastic reaction–diffusion equation can be approximated by solutions to averaged stochastic reaction–diffusion equation in the sense of convergence in probability and in distribution. Namely, we establish a weak law of large numbers for the solution of stochastic reaction–diffusion equation.  相似文献   

6.
The modified decomposition method has been implemented for solving a coupled Klein–Gordon–Schrödinger equation. We consider a system of coupled Klein–Gordon–Schrödinger equation with appropriate initial values using the modified decomposition method. The method does not need linearization, weak nonlinearity assumptions or perturbation theory. The numerical solutions of coupled Klein–Gordon–Schrödinger equation have been represented graphically.  相似文献   

7.
We establish a discrete model for the potential Ablowitz–Kaup–Newell–Segur equation via a generalized Cauchy matrix approach. Soliton solutions and Jordan block solutions of this equation are presented by solving the determining equation set. By applying appropriate continuum limits, we obtain two semi-discrete potential Ablowitz–Kaup–Newell–Segur equations. The reductions to real and complex discrete and semi-discrete potential modified Korteweg-de Vries equations are also discussed.  相似文献   

8.
The Cushing–Henson conjectures on time scales are presented and verified. The central part of these conjectures asserts that based on a model using the dynamic Beverton–Holt equation, a periodic environment is deleterious for the population. The proof technique is as follows. First, the Beverton–Holt equation is identified as a logistic dynamic equation. The usual substitution transforms this equation into a linear equation. Then the proof is completed using a recently established dynamic version of the generalized Jensen inequality.  相似文献   

9.
In this paper, we study the Wong–Zakai approximations given by a stationary process via the Wiener shift and their associated long term behavior of the stochastic reaction–diffusion equation driven by a white noise. We first prove the existence and uniqueness of tempered pullback attractors for the Wong–Zakai approximations of stochastic reaction–diffusion equation. Then, we show that the attractors of Wong–Zakai approximations converges to the attractor of the stochastic reaction–diffusion equation for both additive and multiplicative noise.  相似文献   

10.
A super Camassa–Holm equation with peakon solutions is proposed, which is associated with a 3 × 3 matrix spectral problem with two potentials. With the aid of the zero‐curvature equation, we derive a hierarchy of super Harry Dym type equations and establish their Hamiltonian structures. It is shown that the super Camassa–Holm equation is exactly a negative flow in the hierarchy and admits exact solutions with N peakons. As an example, exact 1‐peakon solutions of the super Camassa–Holm equation are given. Infinitely many conserved quantities of the super Camassa–Holm equation and the super Harry Dym type equation are, respectively, obtained.  相似文献   

11.
In this paper, we study two nonlinear evolution partial differential equations, namely, a modified Camassa–Holm–Degasperis–Procesi equation and the generalized Korteweg–de Vries equation with two power law nonlinearities. For the first time, the Lie symmetry method along with the simplest equation method is used to construct exact solutions for these two equations.  相似文献   

12.
The Novikov equation and a negative flow of the Novikov hierarchy are related to a negative flow of the Sawada–Kotera hierarchy and the Sawada–Kotera equation by reciprocal transformations, respectively. With the help of the Darboux transformations for the negative flow of the Sawada–Kotera hierarchy, the Sawada–Kotera equation and reciprocal transformations, we obtain a parametric representation for N-soliton solutions to the Novikov equation and the negative flow of the Novikov hierarchy.  相似文献   

13.
The paper is concerned with the investigation of a system of first-order Hamilton–Jacobi equations. We consider a strongly coupled hierarchical system: the first equation is independent of the second, and the Hamiltonian of the second equation depends on the gradient of the solution of the first equation. The system can be solved sequentially. The solution of the first equation is understood in the sense of the theory of minimax (viscosity) solutions and can be obtained with the help of the Lax–Hopf formula. The substitution of the solution of the first equation in the second Hamilton–Jacobi equation results in a Hamilton–Jacobi equation with discontinuous Hamiltonian. This equation is solved with the use of the idea of M-solutions proposed by A. I. Subbotin, and the solution is chosen from the class of multivalued mappings. Thus, the solution of the original system of Hamilton–Jacobi equations is the direct product of a single-valued and multivalued mappings, which satisfy the first and second equations in the minimax and M-solution sense, respectively. In the case when the solution of the first equation is nondifferentiable only along one Rankine–Hugoniot line, existence and uniqueness theorems are proved. A representative formula for the solution of the system is obtained in terms of Cauchy characteristics. The properties of the solution and their dependence on the parameters of the problem are investigated.  相似文献   

14.
We propose an unconditionally convergent linear finite element scheme for the stochastic Landau–Lifshitz–Gilbert (LLG) equation with multi-dimensional noise. By using the Doss–Sussmann technique, we first transform the stochastic LLG equation into a partial differential equation that depends on the solution of the auxiliary equation for the diffusion part. The resulting equation has solutions absolutely continuous with respect to time. We then propose a convergent θ-linear scheme for the numerical solution of the reformulated equation. As a consequence, we are able to show the existence of weak martingale solutions to the stochastic LLG equation.  相似文献   

15.
This paper studies the propagation of three‐dimensional surface waves in water with an ambient current over a varying bathymetry. When the ambient flow is near the critical speed, under the shallow water assumptions, a forced Benney–Luke (fBL) equation is derived from the Euler equations. An asymptotic approximation of the water's reaction force over the varying bathymetry is derived in terms of topographic stress. Numerical simulations of the fBL equation over a trough are compared to those using a forced Kadomtsev–Petviashvilli equation. For larger variations in the bathymetry that upstream‐radiating three‐dimensional solitons are observed, which are different from the upstream‐radiating solitons simulated by the forced Kadomtsev–Petviashvilli equation. In this case, we show the fBL equation is a singular perturbation of the forced Kadomtsev–Petviashvilli equation which explains the significant differences between the two flows.  相似文献   

16.
In this paper, a modified characteristics finite element method for the time dependent Navier–Stokes/Darcy problem with the Beavers–Joseph–Saffman interface condition is presented. In this method, the Navier–Stokes/Darcy equation is decoupled into two equations, one is the Navier–Stokes equation, the other is the Darcy equation, and the Navier–Stokes equation is solved by the modified characteristics finite element method. The theory analysis shows that this method has a good convergence property. In order to show the effect of our method, some numerical results was presented. The numerical results show that this method is highly efficient. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper we investigate a new integrable equation derived recently by V.S. Novikov [Generalizations of the Camassa–Holm equation, J. Phys. A 42 (34) (2009) 342002, 14 pp.]. Analogous to the Camassa–Holm equation and the Degasperis–Procesi equation, this new equation possesses the blow-up phenomenon. Under the special structure of this equation, we establish sufficient conditions on the initial data to guarantee the formulation of singularities in finite time. A global existence result is also found.  相似文献   

18.
Doklady Mathematics - The Hudson–Parthasarathy equation and the Itô–Schrödinger equation (known also as the Belavkin equation) describe a Markov approximation of the dynamics...  相似文献   

19.
In this paper, we study the optimal control problem for the viscous generalized Camassa–Holm equation. We deduce the existence and uniqueness of weak solution to the viscous generalized Camassa–Holm equation in a short interval by using Galerkin method. Then, by using optimal control theories and distributed parameter system control theories, the optimal control of the viscous generalized Camassa–Holm equation under boundary condition is given and the existence of optimal solution to the viscous generalized Camassa–Holm equation is proved.  相似文献   

20.
Computational Mathematics and Mathematical Physics - For the linear part of a nonlinear equation related to the well-known Benjamin–Bona–Mahoney–Burgers (BBMB) equation, a...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号