首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
股市诸多行业风险之间存在着波动相依性,集成计量多维风险对投资决策意义重大。藤Copula是Copula函数高维化拓展的一个方向,其动态化是新的研究前沿。将极值理论的GPD模型和高维动态C藤Copula方法结合起来研究沪深300指数中地产、基建、银行和运输四个行业风险,能够有效描述尾部极值形态,突出关键变量的作用。再运用动态Pair-Copula分解,刻画高维行业风险变量间的动态关系,以仿真出动态集成风险变量VaR序列。VaR计算结果通过了回溯检验和稳定性测试,表明高维动态C藤Copula模型可以作为风险集成计量的一种新的有效方法。  相似文献   

2.
This paper investigates the structure of dependence among twelve European markets and among twelve Asian-Pacific markets. The dynamic of the dependence structure is described by a two-state regime switching model. The dependence structure during a bull phase is modelled by the Gaussian copula, while dependence during a bear phase is modelled by the regular vine copula. We analyze the regular vine structure in the second regime precisely. We perform a simplification procedure using a likelihood-ratio test and discuss the substitution of general regular vines by canonical vines or drawable vines. The analysis confirms the two-state nature of financial markets in addition to asymmetric and heavy-tailed dependences. Additionally, the European market has proven to be more strongly connected than the Asian-Pacific market, and European dependences are deeper in terms of conditional dependences. The results can be used by international investors by taking into account differences of both analyzed regions. Additionally, the analysis may help with the crisis prediction. The shift time to the market phase describing crisis times occurs significantly before the crisis itself.  相似文献   

3.
The analysis of multivariate time series is a common problem in areas like finance and economics. The classical tools for this purpose are vector autoregressive models. These however are limited to the modeling of linear and symmetric dependence. We propose a novel copula‐based model that allows for the non‐linear and non‐symmetric modeling of serial as well as between‐series dependencies. The model exploits the flexibility of vine copulas, which are built up by bivariate copulas only. We describe statistical inference techniques for the new model and discuss how it can be used for testing Granger causality. Finally, we use the model to investigate inflation effects on industrial production, stock returns and interest rates. In addition, the out‐of‐sample predictive ability is compared with relevant benchmark models. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
To understand and predict chronological dependence in the second‐order moments of asset returns, this paper considers a multivariate hysteretic autoregressive (HAR) model with generalized autoregressive conditional heteroskedasticity (GARCH) specification and time‐varying correlations, by providing a new method to describe a nonlinear dynamic structure of the target time series. The hysteresis variable governs the nonlinear dynamics of the proposed model in which the regime switch can be delayed if the hysteresis variable lies in a hysteresis zone. The proposed setup combines three useful model components for modeling economic and financial data: (1) the multivariate HAR model, (2) the multivariate hysteretic volatility models, and (3) a dynamic conditional correlation structure. This research further incorporates an adapted multivariate Student t innovation based on a scale mixture normal presentation in the HAR model to tolerate for dependence and different shaped innovation components. This study carries out bivariate volatilities, Value at Risk, and marginal expected shortfall based on a Bayesian sampling scheme through adaptive Markov chain Monte Carlo (MCMC) methods, thus allowing to statistically estimate all unknown model parameters and forecasts simultaneously. Lastly, the proposed methods herein employ both simulated and real examples that help to jointly measure for industry downside tail risk.  相似文献   

5.
Reliability analysis requires modeling of joint probability distribution of uncertain parameters, which can be a challenge since the random variables representing the parameter uncertainties may be correlated. For convenience, a Gaussian data dependence is commonly assumed for correlated random variables. This paper first investigates the effect of multidimensional non-Gaussian data dependences underlying the multivariate probability distribution on reliability results. Using different bivariate copulas in a vine structure, various data dependences can be modeled. The associated copula parameters are identified from available statistical information by moment matching techniques. After the development of the vine copula model for representing the multivariate probability distribution, the reliability involving correlated random variables is evaluated based on the Rosenblatt transformation. The impact of data dependence is significant because a large deviation in failure probability is observed, which emphasizes the need for accurate dependence characterization. A practical method for dependence modeling based on limited data is thus provided. The result demonstrates that the non-Gaussian data dependences can be real in practice, and the reliability can be biased if the Gaussian dependence is used inappropriately. Moreover, the effect of conditioning order on reliability should not be overlooked except that the vine structure contains only one type of copula.  相似文献   

6.
Modeling dependence in high-dimensional systems has become an increasingly important topic. Most approaches rely on the assumption of a multivariate Gaussian distribution such as statistical models on directed acyclic graphs (DAGs). They are based on modeling conditional independencies and are scalable to high dimensions. In contrast, vine copula models accommodate more elaborate features like tail dependence and asymmetry, as well as independent modeling of the marginals. This flexibility comes however at the cost of exponentially increasing complexity for model selection and estimation. We show a novel connection between DAGs with limited number of parents and truncated vine copulas under sufficient conditions. This motivates a more general procedure exploiting the fast model selection and estimation of sparse DAGs while allowing for non-Gaussian dependence using vine copulas. By numerical examples in hundreds of dimensions, we demonstrate that our approach outperforms the standard method for vine structure selection. Supplementary material for this article is available online.  相似文献   

7.
基于“藤”结构的高维动态Copula的构建   总被引:4,自引:0,他引:4  
高维化和动态化是当前Copula理论研究和应用的两个重要方向.采用图形建模工具中"藤"的层叠结构,以二元动态Copula取代原有二元静态Copula作为"藤"的节点,将高维Copula建模中"藤"的方法与动态Copula相结合,构造了"动态藤Copula".实证表明,高维动态藤Copula较相应的高维静态藤Copula对数据的概率模型的似然率更高.  相似文献   

8.
Tail dependence and conditional tail dependence functions describe, respectively, the tail probabilities and conditional tail probabilities of a copula at various relative scales. The properties as well as the interplay of these two functions are established based upon their homogeneous structures. The extremal dependence of a copula, as described by its extreme value copulas, is shown to be completely determined by its tail dependence functions. For a vine copula built from a set of bivariate copulas, its tail dependence function can be expressed recursively by the tail dependence and conditional tail dependence functions of lower-dimensional margins. The effect of tail dependence of bivariate linking copulas on that of a vine copula is also investigated.  相似文献   

9.

A new computational approach based on the pointwise regularity exponent of the price time series is proposed to estimate Value at Risk. The forecasts obtained are compared with those of two largely used methodologies: the variance-covariance method and the exponentially weighted moving average method. Our findings show that in two very turbulent periods of financial markets the forecasts obtained using our algorithm decidedly outperform the two benchmarks, providing more accurate estimates in terms of both unconditional coverage and independence and magnitude of losses.

  相似文献   

10.
Copula functions can be useful in accounting for various dependence patterns appearing in joint tails of data. We propose a new two-parameter bivariate copula family that possesses the following features. First, both upper and lower tails are able to explain full-range tail dependence. That is, the dependence in each tail can range among quadrant tail independence, intermediate tail dependence, and usual tail dependence. Second, it can capture upper and lower tail dependence patterns that are either the same or different. We first prove the full-range tail dependence property, and then we obtain the corresponding extreme value copula. There are two applications based on the proposed copula. The first one is modeling pairwise dependence between financial markets. The second one is modeling dynamic tail dependence patterns that appear in upper and lower tails of a loss-and-expense data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号