首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
This paper presents a two-stage intelligent search algorithm for a two-dimensional strip packing problem without guillotine constraint. In the first stage, a heuristic algorithm is proposed, which is based on a simple scoring rule that selects one rectangle from all rectangles to be packed, for a given space. In the second stage, a local search and a simulated annealing algorithm are combined to improve solutions of the problem. In particular, a multi-start strategy is designed to enhance the search capability of the simulated annealing algorithm. Extensive computational experiments on a wide range of benchmark problems from zero-waste to non-zero-waste instances are implemented. Computational results obtained in less than 60 seconds of computation time show that the proposed algorithm outperforms the supposedly excellent algorithms reported recently, on average. It performs particularly better for large instances.  相似文献   

2.
In the strip packing problem the goal is to pack a set of rectangles into a vertical strip so as to minimize the total height of the strip needed. We consider a modified version of the strip packing problem. In this version it is allowed to change the form of the rectangles by lengthening them, keeping the area fixed. We introduce online algorithms to solve this modified problem. Moreover a lower bound is presented, as well.  相似文献   

3.
We propose exact algorithms for the two-dimensional strip packing problem (2SP) with and without 90° rotations. We first focus on the perfect packing problem (PP), which is a special case of 2SP, wherein all given rectangles are required to be packed without wasted space, and design branch-and-bound algorithms introducing several branching rules and bounding operations. A combination of these rules yields an algorithm that is especially efficient for feasible instances of PP. We then propose several methods of applying the PP algorithms to 2SP. Our algorithms succeed in efficiently solving benchmark instances of PP with up to 500 rectangles and those of 2SP with up to 200 rectangles. They are often faster than existing exact algorithms specially tailored for problems without rotations.  相似文献   

4.
In this work, we deal with the problem of packing (orthogonally and without overlapping) identical rectangles in a rectangle. This problem appears in different logistics settings, such as the loading of boxes on pallets, the arrangements of pallets in trucks and the stowing of cargo in ships. We present a recursive partitioning approach combining improved versions of a recursive five-block heuristic and an L-approach for packing rectangles into larger rectangles and L-shaped pieces. The combined approach is able to rapidly find the optimal solutions of all instances of the pallet loading problem sets Cover I and II (more than 50?000 instances). It is also effective for solving the instances of problem set Cover III (almost 100?000 instances) and practical examples of a woodpulp stowage problem, if compared to other methods from the literature. Some theoretical results are also discussed and, based on them, efficient computer implementations are introduced. The computer implementation and the data sets are available for benchmarking purposes.  相似文献   

5.
In the rectangle packing area minimization problem (RPAMP) we are given a set of rectangles with known dimensions. We have to determine an arrangement of all rectangles, without overlapping, inside an enveloping rectangle of minimum area. The paper presents a generic approach for solving the RPAMP that is based on two algorithms, one for the 2D Knapsack Problem (KP), and the other for the 2D Strip Packing Problem (SPP). In this way, solving an instance of the RPAMP is reduced to solving multiple SPP and KP instances. A fast constructive heuristic is used as SPP algorithm while the KP algorithm is instantiated by a tree search method and a genetic algorithm alternatively. All these SPP and KP methods have been published previously. Finally, the best variants of the resulting RPAMP heuristics are combined within one procedure. The guillotine cutting condition is always observed as an additional constraint. The approach was tested on 15 well-known RPAMP instances (above all MCNC and GSRC instances) and new best solutions were obtained for 10 instances. The computational effort remains acceptable. Moreover, 24 new benchmark instances are introduced and promising results are reported.  相似文献   

6.
This paper deals with the fuzzy bin packing problem that is a packing problem of non-rigid rectangles into an open rectangular bin. This problem is different from the conventional bin packing problem, which considers only rigid rectangles. The goal of the fuzzy bin packing problem is to minimize both the height of a packing and the extra cost due to the reduction of each piece. The total cost of the problem is represented as the sum of the height cost and the extra cost due to reductions of the pieces, which is called reduction cost. Because the conventional bin packing problem itself is an NP-hard problem, the presented optimization method assumes that an initial packing for non-reduced pieces has already been found. A closed form solution is presented for fuzzy bin packing problems, in which fuzzy numbers are triangular and the reduction cost is given by a quadratic function.  相似文献   

7.
We consider two types of orthogonal, oriented, rectangular, two-dimensional packing problems. The first is the strip packing problem, for which four new and improved level-packing algorithms are presented. Two of these algorithms guarantee a packing that may be disentangled by guillotine cuts. These are combined with a two-stage heuristic designed to find a solution to the variable-sized bin packing problem, where the aim is to pack all items into bins so as to minimise the packing area. This heuristic packs the levels of a solution to the strip packing problem into large bins and then attempts to repack the items in those bins into smaller bins in order to reduce wasted space. The results of the algorithms are compared to those of seven level-packing heuristics from the literature by means of a large number of strip-packing benchmark instances. It is found that the new algorithms are an improvement over known level-packing heuristics for the strip packing problem. The advancements made by the new and improved algorithms are limited in terms of utilised space when applied to the variable-sized bin packing problem. However, they do provide results faster than many existing algorithms.  相似文献   

8.
The knapsack container loading problem is the problem of loading a subset of rectangular boxes into a rectangular container of fixed dimensions such that the volume of the packed boxes is maximized. A new heuristic based on the wall-building approach is proposed, which decomposes the problem into a number of layers which again are split into a number of strips. The packing of a strip may be formulated and solved optimally as a Knapsack Problem with capacity equal to the width or height of the container. The depth of a layer as well as the thickness of each strip is decided through a branch-and-bound approach where at each node only a subset of branches is explored.Several ranking rules for the selection of the most promising layer depths and strip widths are presented and the performance of the corresponding algorithms is experimentally compared for homogeneous and heterogeneous instances. The best ranking rule is then used in a comprehensive computational study involving large-sized instances. These computational results show that instances with a total box volume up to 90% easily may be solved to optimality, and that average fillings of the container volume exceeding 95% may be obtained for large-sized instances.  相似文献   

9.
In a non-guillotinable rectangular strip packing problem (RF-SPP), the best orthogonal placement of given rectangular pieces on a strip of stock sheet having fixed width and infinite height are searched. The aim is to minimize the height of the strip while including all the pieces in appropriate orientations. In this study, a novel bidirectional best-fit heuristic (BBF) is introduced for solving RF-SPPs. The proposed heuristic as a new feature considers the gaps in both horizontal and vertical directions during the placement process. The performance of BBF is compared to some previous approaches, including one of the best heuristics from the literature. BBF achieves better results than the existing heuristics and delivers a better or matching performance as compared to the most of the previously proposed meta-heuristics for solving RF-SPPs.  相似文献   

10.
The irregular strip packing problem consists of cutting a set of convex and non-convex two-dimensional polygonal pieces from a board with a fixed height and infinite length. Owing to the importance of this problem, a large number of mathematical models and solution methods have been proposed. However, only few papers consider that the pieces can be rotated at any angle in order to reduce the board length used. Furthermore, the solution methods proposed in the literature are mostly heuristic. This paper proposes a novel mixed integer quadratically-constrained programming model for the irregular strip packing problem considering continuous rotations for the pieces. In the model, the pieces are allocated on the board using a reference point and its allocation is given by the translation and rotation of the pieces. To reduce the number of symmetric solutions for the model, sets of symmetry-breaking constraints are proposed. Computational experiments were performed on the model with and without symmetry-breaking constraints, showing that symmetry elimination improves the quality of solutions found by the solution methods. Tests were performed with instances from the literature. For two instances, it was possible to compare the solutions with a previous model from the literature and show that the proposed model is able to obtain numerically accurate solutions in competitive computational times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号