首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Interpretability is one of the key concepts in many of the applications using the fuzzy rule-based approach. It is well known that there are many different criteria around this concept, the complexity being one of them. In this paper, we focus our efforts in reducing the complexity of the fuzzy rule sets. One of the most interesting approaches for learning fuzzy rules is the iterative rule learning approach. It is mainly characterized by obtaining rules covering few examples in final stages, being in most cases useless to represent the knowledge. This behavior is due to the specificity of the extracted rules, which eventually creates more complex set of rules. Thus, we propose a modified version of the iterative rule learning algorithm in order to extract simple rules relaxing this natural trend. The main idea is to change the rule extraction process to be able to obtain more general rules, using pruned searching spaces together with a knowledge simplification scheme able to replace learned rules. The experimental results prove that this purpose is achieved. The new proposal reduces the complexity at both, the rule and rule base levels, maintaining the accuracy regarding to previous versions of the algorithm.  相似文献   

2.
Evolving fuzzy rule based controllers using genetic algorithms   总被引:9,自引:0,他引:9  
The synthesis of genetics-based machine learning and fuzzy logic is beginning to show promise as a potent tool in solving complex control problems in multi-variate non-linear systems. In this paper an overview of current research applying the genetic algorithm to fuzzy rule based control is presented. A novel approach to genetics-based machine learning of fuzzy controllers, called a Pittsburgh Fuzzy Classifier System # 1 (P-FCS1) is proposed. P-FCS1 is based on the Pittsburgh model of learning classifier systems and employs variable length rule-sets and simultaneously evolves fuzzy set membership functions and relations. A new crossover operator which respects the functional linkage between fuzzy rules with overlapping input fuzzy set membership functions is introduced. Experimental results using P-FCS 1 are reported and compared with other published results. Application of P-FCS1 to a distributed control problem (dynamic routing in computer networks) is also described and experimental results are presented.  相似文献   

3.
In this paper, a fuzzy wavelet network is proposed to approximate arbitrary nonlinear functions based on the theory of multiresolution analysis (MRA) of wavelet transform and fuzzy concepts. The presented network combines TSK fuzzy models with wavelet transform and ROLS learning algorithm while still preserve the property of linearity in parameters. In order to reduce the number of fuzzy rules, fuzzy clustering is invoked. In the clustering algorithm, those wavelets that are closer to each other in the sense of the Euclidean norm are placed in a group and are used in the consequent part of a fuzzy rule. Antecedent parts of the rules are Gaussian membership functions. Determination of the deviation parameter is performed with the help of gold partition method. Here, mean of each function is derived by averaging center of all wavelets that are related to that particular rule. The overall developed fuzzy wavelet network is called fuzzy wave-net and simulation results show superior performance over previous networks.The present work is complemented by a second part which focuses on the control aspects and to be published in this journal([17]). This paper proposes an observer based self-structuring robust adaptive fuzzy wave-net (FWN) controller for a class of nonlinear uncertain multi-input multi-output systems.  相似文献   

4.
5.
The aim of this research is to develop a new methodology called UNFIR (uncertainty in FIR) as an extension of the fuzzy inductive reasoning (FIR) technique. The main idea behind UNFIR is to expand the modeling capacity of the FIR methodology allowing it to work with classical fuzzy rules. On the one hand, UNFIR is able to automatically construct fuzzy rules starting from a set of pattern rules obtained by FIR. On the other hand, UNFIR affords the prediction of systems behavior by using a mixed pattern/fuzzy inference system that takes advantage of the uncertainty inherent to the data. The pattern rule base that the FIR methodology generates can be very large, obstructing the prediction process and reducing its efficiency. The new methodology preserves as much as possible the knowledge of the pattern rules in a compact fuzzy rule base. In this process some precision is lost but the robustness is considerably increased.The performance of UNFIR methodology as a systems’ prediction tool is also studied in this work. Three different applications are used for this purpose, i.e., a linear system, a non-linear system and an industrial process.  相似文献   

6.
In this paper, we propose a genetic programming (GP) based approach to evolve fuzzy rule based classifiers. For a c-class problem, a classifier consists of c trees. Each tree, T i , of the multi-tree classifier represents a set of rules for class i. During the evolutionary process, the inaccurate/inactive rules of the initial set of rules are removed by a cleaning scheme. This allows good rules to sustain and that eventually determines the number of rules. In the beginning, our GP scheme uses a randomly selected subset of features and then evolves the features to be used in each rule. The initial rules are constructed using prototypes, which are generated randomly as well as by the fuzzy k-means (FKM) algorithm. Besides, experiments are conducted in three different ways: Using only randomly generated rules, using a mixture of randomly generated rules and FKM prototype based rules, and with exclusively FKM prototype based rules. The performance of the classifiers is comparable irrespective of the type of initial rules. This emphasizes the novelty of the proposed evolutionary scheme. In this context, we propose a new mutation operation to alter the rule parameters. The GP scheme optimizes the structure of rules as well as the parameters involved. The method is validated on six benchmark data sets and the performance of the proposed scheme is found to be satisfactory.  相似文献   

7.
This paper compares heuristic criteria used for extracting a pre-specified number of fuzzy classification rules from numerical data. We examine the performance of each heuristic criterion through computational experiments on well-known test problems. Experimental results show that better results are obtained from composite criteria of confidence and support measures than their individual use. It is also shown that genetic algorithm-based rule selection can improve the classification ability of extracted fuzzy rules by searching for good rule combinations. This observation suggests the importance of taking into account the combinatorial effect of fuzzy rules (i.e., the interaction among them).  相似文献   

8.
A kind of real-time stable self-learning fuzzy neural network (FNN) control system is proposed in this paper. The control system is composed of two parts: (1) A FNN controller which use genetic algorithm (GA) to search optimal fuzzy rules and membership functions for the unknown controlled plant; (2) A supervisor which can guarantee the stability of the control system during the real-time learning stage, since the GA has some random property which may cause control system unstable. The approach proposed in this paper combine a priori knowledge of designer and the learning ability of FNN to achieve optimal fuzzy control for an unknown plant in real-time. The efficiency of the approach is verified by computer simulation.  相似文献   

9.
This paper examines the interpretability-accuracy tradeoff in fuzzy rule-based classifiers using a multiobjective fuzzy genetics-based machine learning (GBML) algorithm. Our GBML algorithm is a hybrid version of Michigan and Pittsburgh approaches, which is implemented in the framework of evolutionary multiobjective optimization (EMO). Each fuzzy rule is represented by its antecedent fuzzy sets as an integer string of fixed length. Each fuzzy rule-based classifier, which is a set of fuzzy rules, is represented as a concatenated integer string of variable length. Our GBML algorithm simultaneously maximizes the accuracy of rule sets and minimizes their complexity. The accuracy is measured by the number of correctly classified training patterns while the complexity is measured by the number of fuzzy rules and/or the total number of antecedent conditions of fuzzy rules. We examine the interpretability-accuracy tradeoff for training patterns through computational experiments on some benchmark data sets. A clear tradeoff structure is visualized for each data set. We also examine the interpretability-accuracy tradeoff for test patterns. Due to the overfitting to training patterns, a clear tradeoff structure is not always obtained in computational experiments for test patterns.  相似文献   

10.
基于模糊集相容性的模糊控制规则优化方法   总被引:2,自引:0,他引:2  
在简要介绍模糊模型的完备性和相容性的基础上 ,根据模糊集贴近度 ,提出模糊集相容性的概念 ;通过对模糊控制规则表特征的分析 ,进一步完善规则相容性概念及其定量评价方法 ;最后给出模糊控制规则模型自寻优优化方法。仿真结果表明 ,该方法可以大大提高控制系统的控制性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号