首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a new family of models that is based on graphs that may have undirected, directed and bidirected edges. We name these new models marginal AMP (MAMP) chain graphs because each of them is Markov equivalent to some AMP chain graph under marginalization of some of its nodes. However, MAMP chain graphs do not only subsume AMP chain graphs but also multivariate regression chain graphs. We describe global and pairwise Markov properties for MAMP chain graphs and prove their equivalence for compositional graphoids. We also characterize when two MAMP chain graphs are Markov equivalent.For Gaussian probability distributions, we also show that every MAMP chain graph is Markov equivalent to some directed and acyclic graph with deterministic nodes under marginalization and conditioning on some of its nodes. This is important because it implies that the independence model represented by a MAMP chain graph can be accounted for by some data generating process that is partially observed and has selection bias. Finally, we modify MAMP chain graphs so that they are closed under marginalization for Gaussian probability distributions. This is a desirable feature because it guarantees parsimonious models under marginalization.  相似文献   

2.
In this article we study the expressiveness of the different chain graph interpretations. Chain graphs is a class of probabilistic graphical models that can contain two types of edges, representing different types of relationships between the variables in question. Chain graphs is also a superclass of directed acyclic graphs, i.e. Bayesian networks, and can thereby represent systems more accurately than this less expressive class of models. Today there do however exist several different ways of interpreting chain graphs and what conditional independences they encode, giving rise to different so-called chain graph interpretations. Previous research has approximated the number of representable independence models for the Lauritzen–Wermuth–Frydenberg and the multivariate regression chain graph interpretations using an MCMC based approach. In this article we use a similar approach to approximate the number of models representable by the latest chain graph interpretation in research, the Andersson–Madigan–Perlman interpretation. Moreover we summarize and compare the different chain graph interpretations with each other. Our results confirm previous results that directed acyclic graphs only can represent a small fraction of the models representable by chain graphs, even for a low number of nodes. The results also show that the Andersson–Madigan–Perlman and multivariate regression interpretations can represent about the same amount of models and twice the amount of models compared to the Lauritzen–Wermuth–Frydenberg interpretation. However, at the same time almost all models representable by the latter interpretation can only be represented by that interpretation while the former two have a large intersection in terms of representable models.  相似文献   

3.
We propose two robust data‐driven techniques for detecting network structure change points between heavy‐tailed multivariate time series for situations where both the placement and number of change points are unknown. The first technique utilizes the graphical lasso method to estimate the change points, whereas the second technique utilizes the tlasso method. The techniques not only locate the change points but also estimate an undirected graph (or precision matrix) representing the relationship between the time series within each interval created by pairs of adjacent change points. An inference procedure on the edges is used in the graphs to effectively remove false‐positive edges, which are caused by the data deviating from normality. The techniques are compared using simulated multivariate t‐distributed (heavy‐tailed) time series data and the best method is applied to two financial returns data sets of stocks and indices. The results illustrate the method's ability to determine how the dependence structure of the returns changes over time. This information could potentially be used as a tool for portfolio optimization.  相似文献   

4.
We describe various sets of conditional independence relationships, sufficient for qualitatively comparing non-vanishing squared partial correlations of a Gaussian random vector. These sufficient conditions are satisfied by several graphical Markov models. Rules for comparing degree of association among the vertices of such Gaussian graphical models are also developed. We apply these rules to compare conditional dependencies on Gaussian trees. In particular for trees, we show that such dependence can be completely characterised by the length of the paths joining the dependent vertices to each other and to the vertices conditioned on. We also apply our results to postulate rules for model selection for polytree models. Our rules apply to mutual information of Gaussian random vectors as well.  相似文献   

5.
We introduce and study a calculus for real-valued square matrices, called partial inversion, and an associated calculus for binary square matrices. The first, applied to systems of recursive linear equations, generates new sets of parameters for different types of statistical joint response models. The corresponding generating graphs are directed and acyclic. The second calculus, applied to matrix representations of independence graphs, gives chain graphs induced by such a generating graph. Chain graphs are more complex independence graphs associated with recursive joint response models. Missing edges in independence graphs coincide with structurally zero parameters in linear systems. A wide range of consequences of an assumed independence structure can be derived by partial closure, but computationally efficient algorithms still need to be developed for applications to very large graphs. AMS subject classification (2000) 00A71, 15A09, 15A23, 05C99, 62H99, 62J05  相似文献   

6.
Marginal AMP chain graphs are a recently introduced family of models that is based on graphs that may have undirected, directed and bidirected edges. They unify and generalize the AMP and the multivariate regression interpretations of chain graphs. In this paper, we present a constraint based algorithm for learning a marginal AMP chain graph from a probability distribution which is faithful to it. We show that the marginal AMP chain graph returned by our algorithm is a distinguished member of its Markov equivalence class. We also show that our algorithm performs well in practice. Finally, we show that the extension of Meek's conjecture to marginal AMP chain graphs does not hold, which compromises the development of efficient and correct score+search learning algorithms under assumptions weaker than faithfulness.  相似文献   

7.
Generation of deviates from random graph models with nontrivial edge dependence is an increasingly important problem. Here, we introduce a method which allows perfect sampling from random graph models in exponential family form (“exponential family random graph” models), using a variant of Coupling From The Past. We illustrate the use of the method via an application to the Markov graphs, a family that has been the subject of considerable research. We also show how the method can be applied to a variant of the biased net models, which are not exponentially parameterized.  相似文献   

8.
传统的两变量Granger因果分析法容易产生伪因果关系,且不能刻画变量间的同期因果性.利用图模型方法研究多维时间序列变量间Granger因果关系,通过Granger因果图的建立将问题转化为Granger因果图结构的辨识问题,利用局部密度估计法构造相应的辨识统计量,采用bootstrap方法来确定检验统计量的原分布.模拟分析以及对于中国股市间Granger因果关系的研究说明了该方法的有效性.  相似文献   

9.
A multivariate normal statistical model defined by the Markov properties determined by an acyclic digraph admits a recursive factorization of its likelihood function (LF) into the product of conditional LFs, each factor having the form of a classical multivariate linear regression model (≡WMANOVA model). Here these models are extended in a natural way to normal linear regression models whose LFs continue to admit such recursive factorizations, from which maximum likelihood estimators and likelihood ratio (LR) test statistics can be derived by classical linear methods. The central distribution of the LR test statistic for testing one such multivariate normal linear regression model against another is derived, and the relation of these regression models to block-recursive normal linear systems is established. It is shown how a collection of nonnested dependent normal linear regression models (≡Wseemingly unrelated regressions) can be combined into a single multivariate normal linear regression model by imposing a parsimonious set of graphical Markov (≡Wconditional independence) restrictions.  相似文献   

10.
We propose a Bayesian approach for inference in the multivariate probit model, taking into account the association structure between binary observations. We model the association through the correlation matrix of the latent Gaussian variables. Conditional independence is imposed by setting some off-diagonal elements of the inverse correlation matrix to zero and this sparsity structure is modeled using a decomposable graphical model. We propose an efficient Markov chain Monte Carlo algorithm relying on a parameter expansion scheme to sample from the resulting posterior distribution. This algorithm updates the correlation matrix within a simple Gibbs sampling framework and allows us to infer the correlation structure from the data, generalizing methods used for inference in decomposable Gaussian graphical models to multivariate binary observations. We demonstrate the performance of this model and of the Markov chain Monte Carlo algorithm on simulated and real datasets. This article has online supplementary materials.  相似文献   

11.
A chain graph allows both directed and undirected edges, and contains the underlying mathematical properties of the two. An important method of learning graphical models is to use scoring criteria to measure how well the graph structures fit the data. In this paper, we present a scoring criterion for learning chain graphs based on the Kullback Leibler distance. It is score equivalent, that is, equivalent chain graphs obtain the same score, so it can be used to perform model selection and model averaging.  相似文献   

12.
Markov chain Monte Carlo (MCMC) methods have been used in many fields (physics, chemistry, biology, and computer science) for simulation, inference, and optimization. In many applications, Markov chains are simulated for sampling from target probabilities π(X) defined on graphs G. The graph vertices represent elements of the system, the edges represent spatial relationships, while X is a vector of variables on the vertices which often take discrete values called labels or colors. Designing efficient Markov chains is a challenging task when the variables are strongly coupled. Because of this, methods such as the single-site Gibbs sampler often experience suboptimal performance. A well-celebrated algorithm, the Swendsen–Wang (SW) method, can address the coupling problem. It clusters the vertices as connected components after turning off some edges probabilistically, and changes the color of one cluster as a whole. It is known to mix rapidly under certain conditions. Unfortunately, the SW method has limited applicability and slows down in the presence of “external fields;” for example, likelihoods in Bayesian inference. In this article, we present a general cluster algorithm that extends the SW algorithm to general Bayesian inference on graphs. We focus on image analysis problems where the graph sizes are in the order of 103–106 with small connectivity. The edge probabilities for clustering are computed using discriminative probabilities from data. We design versions of the algorithm to work on multi grid and multilevel graphs, and present applications to two typical problems in image analysis, namely image segmentation and motion analysis. In our experiments, the algorithm is at least two orders of magnitude faster (in CPU time) than the single-site Gibbs sampler.  相似文献   

13.
We introduce a latent process model for time series of attributed random graphs for characterizing multiple modes of association among a collection of actors over time. Two mathematically tractable approximations are derived, and we examine the performance of a class of test statistics for an illustrative change-point detection problem and demonstrate that the analysis through approximation can provide valuable information regarding inference properties.  相似文献   

14.
The purposes of this paper are to introduce a multivariate non-stationary stochastic time series model without individual detrending and to extract the multiple relationships between variables. To infer the statistical relation between variables, we attempt to estimate the co-movement of multivariate non-stationary time series components. The model is expressed in state-space form, and time series components are estimated by the maximum likelihood method using numerical optimization algorithm. The Kalman filter algorithm is used to compute the likelihood of the model. The AIC procedure gives a criterion for selecting the best model fit for the data. The multiple relationship becomes clear by analysing estimated AR coefficients. Real economic data are used for a numerical example.  相似文献   

15.
Probabilistic Decision Graphs (PDGs) are probabilistic graphical models that represent a factorisation of a discrete joint probability distribution using a “decision graph”-like structure over local marginal parameters. The structure of a PDG enables the model to capture some context specific independence relations that are not representable in the structure of more commonly used graphical models such as Bayesian networks and Markov networks. This sometimes makes operations in PDGs more efficient than in alternative models. PDGs have previously been defined only in the discrete case, assuming a multinomial joint distribution over the variables in the model. We extend PDGs to incorporate continuous variables, by assuming a Conditional Gaussian (CG) joint distribution. We also show how inference can be carried out in an efficient way.  相似文献   

16.
We define a new class of coloured graphical models, called regulatory graphs. These graphs have their own distinctive formal semantics and can directly represent typical qualitative hypotheses about regulatory processes like those described by various biological mechanisms. They admit an embellishment into classes of probabilistic statistical models and so standard Bayesian methods of model selection can be used to choose promising candidate explanations of regulation. Regulation is modelled by the existence of a deterministic relationship between the longitudinal series of observations labelled by the receiving vertex and the donating one. This class contains longitudinal cluster models as a degenerate graph. Edge colours directly distinguish important features of the mechanism like inhibition and excitation and graphs are often cyclic. With appropriate distributional assumptions, because the regulatory relationships map onto each other through a group structure, it is possible to define a conditional conjugate analysis. This means that even when the model space is huge it is nevertheless feasible, using a Bayesian MAP search, to a discover regulatory network with a high Bayes Factor score. We also show that, like the class of Bayesian Networks, regulatory graphs also admit a formal but distinctive causal algebra. The topology of the graph then represents collections of hypotheses about the predicted effect of controlling the process by tearing out message passers or forcing them to transmit certain signals. We illustrate our methods on a microarray experiment measuring the expression of thousands of genes as a longitudinal series where the scientific interest lies in the circadian regulation of these plants.  相似文献   

17.
In this paper, we introduce a class of a directed acyclic graph on the assumption that the collection of random variables indexed by the vertices has a Markov property. We present a flexible approach for the study of the exact distributions of runs and scans on the directed acyclic graph by extending the method of conditional probability generating functions. The results presented here provide a wide framework for developing the exact distribution theory of runs and scans on the graphical models. We also show that our theoretical results can easily be carried out through some computer algebra systems and give some numerical examples in order to demonstrate the feasibility of our theoretical results. As applications, two special reliability systems are considered, which are closely related to our general results. Finally, we address the parameter estimation in the distributions of runs and scans.  相似文献   

18.
In this paper, we first consider graphs allowing symmetry groups which act transitively on edges but not on darts (directed edges). We see that there are two ways in which this can happen and we introduce the terms bi‐transitive and semi‐transitive to describe them. We examine the elementary implications of each condition and consider families of examples; primary among these are the semi‐transitive spider‐graphs PS(k,N;r) and MPS(k,N;r). We show how a product operation can be used to produce larger graphs of each type from smaller ones. We introduce the alternet of a directed graph. This links the two conditions, for each alternet of a semi‐transitive graph (if it has more than one) is a bi‐transitive graph. We show how the alternets can be used to understand the structure of a semi‐transitive graph, and that the action of the group on the set of alternets can be an interesting structure in its own right. We use alternets to define the attachment number of the graph, and the important special cases of tightly attached and loosely attached graphs. In the case of tightly attached graphs, we show an addressing scheme to describe the graph with coordinates. Finally, we use the addressing scheme to complete the classification of tightly attached semi‐transitive graphs of degree 4 begun by Marus?ic? and Praeger. This classification shows that nearly all such graphs are spider‐graphs. © 2003 Wiley Periodicals, Inc. J Graph Theory 45: 1–27, 2004  相似文献   

19.
Chain event graphs are graphical models that while retaining most of the structural advantages of Bayesian networks for model interrogation, propagation and learning, more naturally encode asymmetric state spaces and the order in which events happen than Bayesian networks do. In addition, the class of models that can be represented by chain event graphs for a finite set of discrete variables is a strict superset of the class that can be described by Bayesian networks. In this paper we demonstrate how with complete sampling, conjugate closed form model selection based on product Dirichlet priors is possible, and prove that suitable homogeneity assumptions characterise the product Dirichlet prior on this class of models. We demonstrate our techniques using two educational examples.  相似文献   

20.
The “classical” random graph models, in particular G(n,p), are “homogeneous,” in the sense that the degrees (for example) tend to be concentrated around a typical value. Many graphs arising in the real world do not have this property, having, for example, power‐law degree distributions. Thus there has been a lot of recent interest in defining and studying “inhomogeneous” random graph models. One of the most studied properties of these new models is their “robustness”, or, equivalently, the “phase transition” as an edge density parameter is varied. For G(n,p), p = c/n, the phase transition at c = 1 has been a central topic in the study of random graphs for well over 40 years. Many of the new inhomogeneous models are rather complicated; although there are exceptions, in most cases precise questions such as determining exactly the critical point of the phase transition are approachable only when there is independence between the edges. Fortunately, some models studied have this property already, and others can be approximated by models with independence. Here we introduce a very general model of an inhomogeneous random graph with (conditional) independence between the edges, which scales so that the number of edges is linear in the number of vertices. This scaling corresponds to the p = c/n scaling for G(n,p) used to study the phase transition; also, it seems to be a property of many large real‐world graphs. Our model includes as special cases many models previously studied. We show that, under one very weak assumption (that the expected number of edges is “what it should be”), many properties of the model can be determined, in particular the critical point of the phase transition, and the size of the giant component above the transition. We do this by relating our random graphs to branching processes, which are much easier to analyze. We also consider other properties of the model, showing, for example, that when there is a giant component, it is “stable”: for a typical random graph, no matter how we add or delete o(n) edges, the size of the giant component does not change by more than o(n). © 2007 Wiley Periodicals, Inc. Random Struct. Alg., 31, 3–122, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号