首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Let $\gamma ,\delta \in \mathbb{R}^n $ with $\gamma _j ,\delta _j \in \{ 0,1\} $ . A comparison pair for a system of equations fi(u1,…,un)=0 (i=1,…,n) is a pair of vectors $v,w \in \mathbb{R}^n ,v \leqslant w$ , such that $$\begin{array}{*{20}c} {\gamma _i f_i (u_1 , \ldots ,u_{i - 1} ,v_i ,u_i + 1, \ldots ,u_n ) \leqslant 0,} \\ {\delta _i f_i (u_1 , \ldots ,u_{i - 1} ,w_i ,u_i + 1, \ldots ,u_n ) \geqslant 0} \\ \end{array} $$ for $\gamma _j u_j \geqslant v_j ,\delta _j u_j \leqslant w_j (j = 1, \ldots ,n)$ . The presence of comparison pairs enables one to essentially weaken the assumptions of the existence theorem. Bibliography: 1 title.  相似文献   

2.
3.
We introduce vanishing generalized Morrey spaces ${V\mathcal{L}^{p,\varphi}_\Pi (\Omega), \Omega \subseteq \mathbb{R}^n}$ with a general function ${\varphi(x, r)}$ defining the Morrey-type norm. Here ${\Pi \subseteq \Omega}$ is an arbitrary subset in Ω including the extremal cases ${\Pi = \{x_0\}, x_0 \in \Omega}$ and Π = Ω, which allows to unify vanishing local and global Morrey spaces. In the spaces ${V\mathcal{L}^{p,\varphi}_\Pi (\mathbb{R}^n)}$ we prove the boundedness of a class of sublinear singular operators, which includes Hardy-Littlewood maximal operator and Calderon-Zygmund singular operators with standard kernel. We also prove a Sobolev-Spanne type ${V\mathcal{L}^{p,\varphi}_\Pi (\mathbb{R}^n) \rightarrow V\mathcal{L}^{q,\varphi^\frac{q}{p}}_\Pi (\mathbb{R}^n)}$ -theorem for the potential operator I α . The conditions for the boundedness are given in terms of Zygmund-type integral inequalities on ${\varphi(x, r)}$ . No monotonicity type condition is imposed on ${\varphi(x, r)}$ . In case ${\varphi}$ has quasi- monotone properties, as a consequence of the main results, the conditions of the boundedness are also given in terms of the Matuszeska-Orlicz indices of the function ${\varphi}$ . The proofs are based on pointwise estimates of the modulars defining the vanishing spaces  相似文献   

4.
In this paper, we study noncommutative domains ${\mathbb{D}_f^\varphi(\mathcal{H}) \subset B(\mathcal{H})^n}$ generated by positive regular free holomorphic functions f and certain classes of n-tuples ${\varphi = (\varphi_1, \ldots, \varphi_n)}$ of formal power series in noncommutative indeterminates Z 1, . . . , Z n . Noncommutative Poisson transforms are employed to show that each abstract domain ${\mathbb{D}_f^\varphi}$ has a universal model consisting of multiplication operators (M Z1, . . . , M Z n ) acting on a Hilbert space of formal power series. We provide a Beurling type characterization of all joint invariant subspaces under M Z1, . . . , M Z n and show that all pure n-tuples of operators in ${\mathbb{D}_f^\varphi(\mathcal{H})}$ are compressions of ${M_{Z_1} \otimes I, \ldots, M_{Z_n} \otimes I}$ to their coinvariant subspaces. We show that the eigenvectors of ${M_{Z_1}^*, \ldots, M_{Z_n}^*}$ are precisely the noncommutative Poisson kernels ${\Gamma_\lambda}$ associated with the elements ${\lambda}$ of the scalar domain ${\mathbb{D}_{f,<}^\varphi(\mathbb{C}) \subset \mathbb{C}^n}$ . These are used to solve the Nevanlinna-Pick interpolation problem for the noncommutative Hardy algebra ${H^\infty(\mathbb{D}_f^\varphi)}$ . We introduce the characteristic function of an n-tuple ${T=(T_1, \ldots , T_n) \in \mathbb{D}_f^\varphi(\mathcal{H})}$ , present a model for pure n-tuples of operators in the noncommutative domain ${\mathbb{D}_f^\varphi(\mathcal{H})}$ in terms of characteristic functions, and show that the characteristic function is a complete unitary invariant for pure n-tuples of operators in ${\mathbb{D}_f^\varphi(\mathcal{H})}$ .  相似文献   

5.
It is well known that the doubly weighted Hardy-Littlewood-Sobolev inequality is as follows,Z Rn Z Rn f(x)g(y)|x||x.y||y|dxdy6 B(p,q,,,,n)kfkLp(Rn)kgkLq(Rn).The main purpose of this paper is to give the sharp constants B(p,q,,,,n)for the above inequality for three cases:(i)p=1 and q=1;(ii)p=1 and 1q 6∞,or 1p 6∞and q=1;(iii)1p,q∞and 1p+1q=1.In addition,the explicit bounds can be obtained for the case 1p,q∞and 1p+1q1.  相似文献   

6.
7.
The embedding of the anisotropic spaces $B_{p_1 , \ldots ,p_n ,\theta }^{\omega _1 , \ldots ,\omega _n } \left( {\mathbb{R}^n } \right)$ with mixed norm is studied. We establish some necessary and sufficient conditions of the embedding $B_{p_1 , \ldots ,p_n ,\theta }^{\omega _1 , \ldots ,\omega _n } \left( {\mathbb{R}^n } \right) \subset L^{q_1 , \ldots ,q_n } \left( {\mathbb{R}^n } \right)$ .  相似文献   

8.
The purpose of this paper is to derive the estimate (0≤α≤2,n∈N,?(x)=[x(1?x)]1/2) $$\omega _\alpha (n^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} ,f) \leqslant M_\alpha n^{ - 1} \sum\limits_{k = 1}^n {\left\| {\varphi ^{ - \alpha } (B_k f - f)} \right\|} c$$ in terms of the modulus of continuity (of second order) $$\omega _\alpha (t,f): = \sup \{ \varphi ^{ - \alpha } (x)|\Delta _{h\varphi (x)}^ * f(x)|:x,x \pm h\varphi (x) \in [0,1],0< h \leqslant t\} $$ and the Bernstein polynomial Bnf for ?f∈C[0,1].  相似文献   

9.
Для данного числаK, 1≦K≦∞, обозначимΩ(K) клас с последовательносте йφ={φ k (x)} стохастически незав исимых на (0,1) функций, дл я которых выполнены условия: $$\int\limits_0^1 {\varphi _k (x)dx = 0,} \int\limits_0^1 {\varphi _k^2 (x)dx = 1, |\varphi _k (x)|} \leqq K(x \in (0,1);k = 1,2, \ldots ).$$ Пусть, далее,λ={λ n } —по следовательность со свойствами $$0< \lambda _1< \ldots< \lambda _n< \ldots ,\mathop {\lim }\limits_{n \to \infty } \lambda _n = \infty ,$$ иМ (λ;K) — множество числ овых последовательн остейa={a k } k=1 , для которых по сле-довательности средних $$\frac{1}{{\lambda _n }}\mathop \sum \limits_{k = 1}^n a_k \varphi _k (x)(n = 1,2, \ldots )$$ сходятся к нулю почтя всюду на (0,1) для всех сис темφ∈Ω(K). В статье, в частности, п утем применения одно го метода Б. С. Кашина, доказываетс я, что для каждогоK, 1 <-K<∞, в ыполнено равенствоM(λ; K)=М(λ; 1).  相似文献   

10.
Получены новые оценк иL-нормы тригонометр ических полиномов $$T_n (t) = \frac{{\lambda _0 }}{2} + \mathop \sum \limits_{k = 1}^n \lambda _k \cos kt$$ в терминах коэффицие нтовλ k и их разностейΔλ k=λ k?λ k?1: (1) $$\mathop \smallint \limits_{ - \pi }^\pi |T_n (t)|dt \leqq \frac{c}{n}\mathop \sum \limits_{k = 0}^n |\lambda _\kappa | + c\left\{ {x(n,\varphi )\mathop \sum \limits_{k = 0}^n \Delta \lambda _\kappa \mathop \sum \limits_{l = 0}^n \Delta \lambda _l \delta _{\kappa ,l} (\varphi )} \right\}^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} ,$$ где $$\kappa (n,\varphi ) = \mathop \smallint \limits_{1/n}^\pi [t^2 \varphi (t)]^{ - 1} dt, \delta _{k,1} (\varphi ) = \mathop \smallint \limits_0^\infty \varphi (t)\sin \left( {k + \frac{1}{2}} \right)t \sin \left( {l + \frac{1}{2}} \right)t dt,$$ a ?(t) — произвольная фун кция ≧0, для которой опр еделены соответствующие инт егралы. Из (1) следует, что методы $$\tau _n (f;t) = (N + 1)^{ - 1} \mathop \sum \limits_{k = 0}^{\rm N} S_{[2^{k^\varepsilon } ]} (f;t), n = [2^{N\varepsilon } ],$$ являются регулярным и для всех 0<ε≦1/2. ЗдесьS m (f, x) частные суммы ряда Фу рье функцииf(x). В статье исследуется многомерный случай. П оказано, что метод суммирования (о бобщенный метод Рисса) с коэффиц иентами $$\lambda _{\kappa ,l} = (R^v - k^\alpha - l^\beta )^\delta R^{ - v\delta } (0 \leqq k^\alpha + l^\beta \leqq R^v ;\alpha \geqq 1,\beta \geqq 1,v< 0)$$ является регулярным, когда δ > 1.  相似文献   

11.
Using elementary arguments based on the Fourier transform we prove that for ${1 \leq q < p < \infty}$ and ${s \geq 0}$ with s > n(1/2 ? 1/p), if ${f \in L^{q,\infty} (\mathbb{R}^n) \cap \dot{H}^s (\mathbb{R}^n)}$ , then ${f \in L^p(\mathbb{R}^n)}$ and there exists a constant c p,q,s such that $$\| f \|_{L^{p}} \leq c_{p,q,s} \| f \|^\theta _{L^{q,\infty}} \| f \|^{1-\theta}_{\dot{H}^s},$$ where 1/pθ/q + (1?θ)(1/2?s/n). In particular, in ${\mathbb{R}^2}$ we obtain the generalised Ladyzhenskaya inequality ${\| f \| _{L^4} \leq c \| f \|^{1/2}_{L^{2,\infty}} \| f \|^{1/2}_{\dot{H}^1}}$ .We also show that for s = n/2 and q > 1 the norm in ${\| f \|_{\dot{H}^{n/2}}}$ can be replaced by the norm in BMO. As well as giving relatively simple proofs of these inequalities, this paper provides a brief primer of some basic concepts in harmonic analysis, including weak spaces, the Fourier transform, the Lebesgue Differentiation Theorem, and Calderon–Zygmund decompositions.  相似文献   

12.
Given \({\varphi\in \verb"C"^2(\textbf{C}^n)}\) satisfying \({dd^{c}\varphi\simeq \omega_0}\) , 0 < p < ∞, let \({F^p(\varphi)}\) be the generalized Fock space of all holomorphic functions f on \({{\mathbf C}^n}\) for which the Fock norm $$\|f\|_{p, \varphi}=\left(\,\int_{{\mathbf C}^n} \left|f(z)\right|^{p}e^ {-p\varphi(z)}dv(z)\right)^{\frac{1}{p}} < \infty. $$ While \({\varphi(z)=\frac{1}{2}|z|^2}\) , \({F^{p}(\varphi)}\) is the classical Fock space F p . In this paper, for all possible 0 < p,q < ∞ we characterize those positive Borel measures μ on \({{\mathbf C}^n}\) for which the induced Toeplitz operators T μ are bounded (or compact) from one generalized Fock spaces \({F^p(\varphi)}\) to another \({F^q(\varphi)}\) . With symbols \({g\in BMO}\) , we obtain Zorborska’s criterion for boundedness (or compactness) of Toeplitz operators T g on F p , our work extends the known results on F 2. Toeplitz operators on p-th Fock space with 0 < p < 1 have not been studied before, even in the simplest case that \({\varphi(z)=\frac{1}{2}|z|^2}\) . Our analysis shows a significant difference between Bergman spaces and Fock spaces.  相似文献   

13.
Let \(\chi _0^n = \left\{ {X_t } \right\}_0^n \) be a martingale such that 0≦Xi≦1;i=0, …,n. For 0≦p≦1 denote by ? p n the set of all such martingales satisfying alsoE(X0)=p. Thevariation of a martingale χ 0 n is denoted byV 0 n and defined by \(V(\chi _0^n ) = E\left( {\sum {_{l = 0}^{n - 1} } \left| {X_{l + 1} - X_l } \right|} \right)\) . It is proved that $$\mathop {\lim }\limits_{n \to \infty } \left\{ {\mathop {Sup}\limits_{x_0^n \in \mathcal{M}_p^n } \left[ {\frac{1}{{\sqrt n }}V(\chi _0^n )} \right]} \right\} = \phi (p)$$ , where ?(p) is the well known normal density evaluated at itsp-quantile, i.e. $$\phi (p) = \frac{1}{{\sqrt {2\pi } }}\exp ( - \frac{1}{2}\chi _p^2 ) where \int_{ - \alpha }^{x_p } {\frac{1}{{\sqrt {2\pi } }}\exp ( - \frac{1}{2}\chi ^2 )} dx = p$$ . A sequence of martingales χ 0 n ,n=1,2, … is constructed so as to satisfy \(\lim _{n \to \infty } (1/\sqrt n )V(\chi _0^n ) = \phi (p)\) .  相似文献   

14.
Letp be a prime number ≡ 3 mod 4,G p the unit group of ?/p?, andg a generator ofG p. Letq be an odd divisor ofp - 1 andG p 2q = {t 2q;tG pthe subgroup of index2q inG p. The groupG p 2 / p 2q consists of the classes \(\bar g^{2j} \) ,j = 0,...,q – 1. In this paper we study the ’excesses’ of the classes \(\bar g^{2j} \) in {l,...,(p–l)/2}, i.e., the numbers \(\Phi _j = \left| {\left\{ {k;1 \leqslant k \leqslant \left( {p - 1} \right)/2,\bar k \in \bar g^{2j} } \right\}} \right| - \left| {\left\{ {k;\left( {p - 1} \right)/2 \leqslant k \leqslant p - 1,\bar k \in \bar g^{2j} } \right\}} \right|\) ,j = 0.....q — 1. First we express therelative class number h 2q of the subfieldK 2q? ?(e2#x03C0;i/p ) of degree [K 2q: ?] =2q in terms of these excesses. We use this formula to establish certaincongruences for the Фj. E.g., ifq ∈ {3,5,11}, each number Фj is congruent modulo 4 to each other iff 2 dividesh 2q - . Finally we study thevariance of the excesses, i.e., the number \(\sigma ^2 = ((\Phi _0 - \hat \Phi )^2 + \ldots + (\Phi _{q - 1} - \hat \Phi )^2 )/(q - 1)\) , where \(\hat \Phi \) is the mean value of the numbers Фj. We obtain an explicit lower bound for σ2 in terms ofh 2q - /h 2 - . Moreover, we show that log σ2 is asymptotically equal to 21og(h 2q - h 2 - )/(q - 1) forp→∞. Three tables illustrate the results.  相似文献   

15.
Let α > 0. We consider the linear span $\mathfrak{X}_\alpha \left( {\mathbb{R}^n } \right)$ of scalar Riesz's kernels $\left\{ {\tfrac{1}{{\left| {x - a} \right|^\alpha }}} \right\}_{a \in \mathbb{R}^n }$ and the linear span $\mathfrak{Y}_\alpha \left( {\mathbb{R}^n } \right)$ of vector Riesz's kernels $\left\{ {\tfrac{1}{{\left| {x - a} \right|^{\alpha + 1} }}\left( {x - a} \right)} \right\}_{a \in \mathbb{R}^n }$ . We study the following problems. (1) When is the intersection $\mathfrak{X}_\alpha \left( {\mathbb{R}^n } \right) \cap L^p \left( {\mathbb{R}^n } \right)$ dense in Lp(?n)? (2) When is the intersection $\mathfrak{Y}_\alpha \left( {\mathbb{R}^n } \right) \cap L^p \left( {\mathbb{R}^n ,\mathbb{R}^n } \right)$ dense in Lp(?n, ?n)? Bibliography: 15 titles.  相似文献   

16.
For the unit ball $\mathit{UB}_{\tau}^{\alpha}(L_{p,w})$ of the weighted Besov space $B_{\tau}^{\alpha}(L_{p,w})$ with an A weight w on the domain Ω, which denotes either the unit sphere, or the unit ball, or the standard simplex of the Euclidean space ? d , the sharp asymptotic order of the quantity $$\mathop{\inf}_{{\lambda}_1, \ldots, {\lambda}_n \in \mathbb{R}\atop{\xi_1,\ldots, \xi_n \in\varOmega }} \sup_{f\in \mathit{UB}_\tau^\alpha(L_{p,w})} \biggl|\int _{\varOmega } f(x) w(x)\, dx-\sum_{j=1}^n{\lambda}_j f(\xi_j) \biggr|$$ is obtained as n→∞. A similar result is also established on unweighted spherical caps.  相似文献   

17.
We introduce polynomials $B^n_{k}(\boldmath{x};\omega|q)$ of total degree n, where $\boldmath{k} = (k_1,\ldots,k_d)\in\mathbb N_0^d, \; 0\le k_1+\ldots+k_d\le n$ , and $\boldmath{x}=(x_1,x_2,\ldots,x_d)\in\mathbb R^d$ , depending on two parameters q and ω, which generalize the multivariate classical and discrete Bernstein polynomials. For ω=0, we obtain an extension of univariate q-Bernstein polynomials, introduced by Phillips (Ann Numer Math 4:511–518, 1997). Basic properties of the new polynomials are given, including recurrence relations, q-differentiation rules and de Casteljau algorithm. For the case d=2, connections between $B^n_{k}(\boldmath{x};\omega|q)$ and bivariate orthogonal big q-Jacobi polynomials—introduced recently by the first two authors—are given, with the connection coefficients being expressed in terms of bivariate q-Hahn polynomials. As limiting forms of these relations, we give connections between bivariate q-Bernstein and Dunkl’s (little) q-Jacobi polynomials (SIAM J Algebr Discrete Methods 1:137–151, 1980), as well as between bivariate discrete Bernstein and Hahn polynomials.  相似文献   

18.
We study spectral properties of Hamiltonians H X,β,q with δ′-point interactions on a discrete set ${X = \{x_k\}_{k=1}^\infty \subset (0, +\infty)}$ . Using the form approach, we establish analogs of some classical results on operators H q =  ?d2/dx 2 + q with locally integrable potentials ${q \in L^1_{\rm loc}[0, +\infty)}$ . In particular, we establish the analogues of the Glazman–Povzner–Wienholtz theorem, the Molchanov discreteness criterion, and the Birman theorem on stability of an essential spectrum. It turns out that in contrast to the case of Hamiltonians with δ-interactions, spectral properties of operators H X,β,q are closely connected with those of ${{\rm H}_{X,q}^N = \oplus_{k}{\rm H}_{q,k}^N}$ , where ${{\rm H}_{q,k}^N}$ is the Neumann realization of ?d2/dx 2 + q in L 2(x k-1,x k ).  相似文献   

19.
It is proved that the operator $$P \equiv - \frac{{\partial ^2 }}{{\partial x_1^2 }} - \sum\nolimits_{k = 2}^n {\frac{\partial }{{\partial x_k }}\varphi ^2 (x)} \frac{\partial }{{\partial x_k }},$$ where ? ε C(Ω) (Ω is a domain in Rn), {x: ?(x) = 0} is a compactun in Ω which is the closure of its internal points, has the property of global hypoellipticity in Ω, i.e., $$\begin{array}{*{20}c} {v \in D'(\Omega ),} & {Pv \in C^\infty } & {(\Omega ) \Rightarrow \upsilon \in C^\infty (\Omega ).} \\ \end{array} $$ . This operator is not hypoelliptic.  相似文献   

20.
We study the following integral type operator
$T_g (f)(z) = \int\limits_0^{z_{} } { \cdots \int\limits_0^{z_n } {f(\zeta _1 , \ldots ,\zeta _n )} g(\zeta _1 , \ldots ,\zeta _n )d\zeta _1 , \ldots ,\zeta _n } $
in the space of analytic functions on the unit polydisk U n in the complex vector space ?n. We show that the operator is bounded in the mixed norm space
, with p, q ∈ [1, ∞) and α = (α1, …, αn), such that αj > ?1, for every j = 1, …, n, if and only if \(\sup _{z \in U^n } \prod\nolimits_{j = 1}^n {\left( {1 - \left| {z_j } \right|} \right)} \left| {g(z)} \right| < \infty \). Also, we prove that the operator is compact if and only if \(\lim _{z \to \partial U^n } \prod\nolimits_{j = 1}^n {\left( {1 - \left| {z_j } \right|} \right)} \left| {g(z)} \right| = 0\).
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号