首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Let k,n be integers with 2≤kn, and let G be a graph of order n. We prove that if max{dG(x),dG(y)}≥(nk+1)/2 for any x,yV(G) with xy and xyE(G), then G has k vertex-disjoint subgraphs H1,…,Hk such that V(H1)∪?∪V(Hk)=V(G) and Hi is a cycle or K1 or K2 for each 1≤ik, unless k=2 and G=C5, or k=3 and G=K1C5.  相似文献   

2.
Let G=(V, E) be a block of order n, different from Kn. Let m=min {d(x)+d(y): [x, y]?E}. We show that if m?n then G contains a cycle of length at least m.  相似文献   

3.
The concept of degree distance of a connected graph G is a variation of the well-known Wiener index, in which the degrees of vertices are also involved. It is defined by D(G)=∑xV(G)d(x)∑yV(G)d(x,y), where d(x) and d(x,y) are the degree of x and the distance between x and y, respectively. In this paper it is proved that connected graphs of order n≥4 having the smallest degree distances are K1,n−1,BS(n−3,1) and K1,n−1+e (in this order), where BS(n−3,1) denotes the bistar consisting of vertex disjoint stars K1,n−3 and K1,1 with central vertices joined by an edge.  相似文献   

4.
Let G=(V,E) be a simple connected graph with vertex set V and edge set E. The Wiener index of G is defined by W(G)=∑{x,y}⊆V d(x,y), where d(x,y) is the length of the shortest path from x to y. The Szeged index of G is defined by Sz(G)=∑ e=uvE n u (e|G)n v (e|G), where n u (e|G) (resp. n v (e|G)) is the number of vertices of G closer to u (resp. v) than v (resp. u). The Padmakar–Ivan index of G is defined by PI(G)=∑ e=uvE [n eu (e|G)+n ev (e|G)], where n eu (e|G) (resp. n ev (e|G)) is the number of edges of G closer to u (resp. v) than v (resp. u). In this paper we find the above indices for various graphs using the group of automorphisms of G. This is an efficient method of finding these indices especially when the automorphism group of G has a few orbits on V or E. We also find the Wiener indices of a few graphs which frequently arise in mathematical chemistry using inductive methods.  相似文献   

5.
 Let G be a 2-connected graph with maximum degree Δ (G)≥d, and let x and y be distinct vertices of G. Let W be a subset of V(G)−{x, y} with cardinality at most d−1. Suppose that max{d G(u), d G(v)}≥d for every pair of vertices u and v in V(G)−({x, y}∪W) with d G(u,v)=2. Then x and y are connected by a path of length at least d−|W|. Received: February 5, 1998 Revised: April 13, 1998  相似文献   

6.
Let p(n) denote the smallest prime factor of an integer n>1 and let p(1)=∞. We study the asymptotic behavior of the sum M(x,y)=Σ1≤nx,p(n)>yμ(n) and use this to estimate the size of A(x)=max|f|≤12≤n<xμ(n)f(p(n))|, where μ(n) is the Moebius function. Applications of bounds for A(x), M(x,y) and similar quantities are discussed.  相似文献   

7.
Let G = (V, E) be a digraph of order n, satisfying Woodall's condition ? x, yV, if (x, y) ? E, then d+(x) + d?(y) ≥ n. Let S be a subset of V of cardinality s. Then there exists a circuit including S and of length at most Min(n, 2s). In the case of oriented graphs we obtain the same result under the weaker condition d+(x) + d?(y) ≥ n – 2 (which implies hamiltonism).  相似文献   

8.
Let G be a graph of order p. The binding number of G is defined as $\mbox{bind}(G):=\min\{\frac{|N_{G}(X)|}{|X|}\mid\emptyset\neq X\subseteq V(G)\,\,\mbox{and}\,\,N_{G}(X)\neq V(G)\}$ . Let g(x) and f(x) be two nonnegative integer-valued functions defined on V(G) with g(x)≤f(x) for any xV(G). A graph G is said to be (g,f,n)-critical if G?N has a (g,f)-factor for each N?V(G) with |N|=n. If g(x)≡a and f(x)≡b for all xV(G), then a (g,f,n)-critical graph is an (a,b,n)-critical graph. In this paper, several sufficient conditions on binding number and minimum degree for graphs to be (a,b,n)-critical or (g,f,n)-critical are given. Moreover, we show that the results in this paper are best possible in some sense.  相似文献   

9.
 Let G be a graph and W a subset of V(G). Let g,f:V(G)→Z be two integer-valued functions such that g(x)≤f(x) for all xV(G) and g(y)≡f(y) (mod 2) for all yW. Then a spanning subgraph F of G is called a partial parity (g,f)-factor with respect to W if g(x)≤deg F (x)≤f(x) for all xV(G) and deg F (y)≡f(y) (mod 2) for all yW. We obtain a criterion for a graph G to have a partial parity (g,f)-factor with respect to W. Furthermore, by making use of this criterion, we give some necessary and sufficient conditions for a graph G to have a subgraph which covers W and has a certain given property. Received: June 14, 1999?Final version received: August 21, 2000  相似文献   

10.
The theory of vertex-disjoint cycles and 2-factors of graphs is the extension and generation of the well-known Hamiltonian cycles theory and it has important applications in network communication. In this paper we first prove the following result. Let G=(V 1,V 2;E) be a bipartite graph with |V 1|=|V 2|=n such that n≥2k+1, where k≥1 is an integer. If d(x)+d(y)≥?(4n+2k?1)/3? for each pair of nonadjacent vertices x and y of G with xV 1 and yV 2, then, for any k independent edges e 1,…,e k of G, G contains k vertex-disjoint quadrilaterals C 1,…,C k such that e i E(C i ) for each i∈{1,…,k}. We further show that the degree condition above is sharp. If |V 1|=|V 2|=2k, we give degree conditions that G has a 2-factor with k vertex-disjoint quadrilaterals C 1,…,C k containing specified edges of G.  相似文献   

11.
Let G be a finite connected graph. If x and y are vertices of G, one may define a distance function dG on G by letting dG(x, y) be the minimal length of any path between x and y in G (with dG(x, x) = 0). Thus, for example, dG(x, y) = 1 if and only if {x, y} is an edge of G. Furthermore, we define the distance matrix D(G) for G to be the square matrix with rows and columns indexed by the vertex set of G which has dG(x, y) as its (x, y) entry. In this paper we are concerned with properties of D(G) for the case in which G is a tree (i.e., G is acyclic). In particular, we precisely determine the coefficients of the characteristic polynomial of D(G). This determination is made by deriving surprisingly simple expressions for these coefficients as certain fixed linear combinations of the numbers of various subgraphs of G.  相似文献   

12.
13.
Let G=(V,E) be a finite, simple and non-empty (p,q)-graph of order p and size q. An (a,d)-vertex-antimagic total labeling is a bijection f from V(G)∪E(G) onto the set of consecutive integers 1,2,…,p+q, such that the vertex-weights form an arithmetic progression with the initial term a and the common difference d, where the vertex-weight of x is the sum of values f(xy) assigned to all edges xy incident to vertex x together with the value assigned to x itself, i.e. f(x). Such a labeling is called super if the smallest possible labels appear on the vertices.In this paper, we will study the properties of such labelings and examine their existence for disconnected graphs.  相似文献   

14.
Let G=(V,E) be a simple, undirected graph of order n and size m with vertex set V, edge set E, adjacency matrix A and vertex degrees Δ=d1d2≥?≥dn=δ. The average degree of the neighbor of vertex vi is . Let D be the diagonal matrix of degrees of G. Then L(G)=D(G)−A(G) is the Laplacian matrix of G and Q(G)=D(G)+A(G) the signless Laplacian matrix of G. Let μ1(G) denote the index of L(G) and q1(G) the index of Q(G). We survey upper bounds on μ1(G) and q1(G) given in terms of the di and mi, as well as the numbers of common neighbors of pairs of vertices. It is well known that μ1(G)≤q1(G). We show that many but not all upper bounds on μ1(G) are still valid for q1(G).  相似文献   

15.
Let R be a prime ring of characteristic different from 2, with Utumi quotient ring U and extended centroid C, δ a nonzero derivation of R, G a nonzero generalized derivation of R, and f(x 1, …, x n ) a noncentral multilinear polynomial over C. If δ(G(f(r 1, …, r n ))f(r 1, …, r n )) = 0 for all r 1, …, r n R, then f(x 1, …, x n )2 is central-valued on R. Moreover there exists aU such that G(x) = ax for all xR and δ is an inner derivation of R such that δ(a) = 0.  相似文献   

16.
The bandwidth B(G) of a graph G is the minimum of the quantity max{|f(x)-f(y)|:xyE(G)} taken over all proper numberings f of G. The strong product of two graphs G and H, written as G(SP)H, is the graph with vertex set V(GV(H) and with (u1,v1) adjacent to (u2,v2) if one of the following holds: (a) u1 and v1 are adjacent to u2 and v2 in G and H, respectively, (b) u1 is adjacent to u2 in G and v1=v2, or (c) u1=u2 and v1 is adjacent to v2 in H. In this paper, we investigate the bandwidth of the strong product of two connected graphs. Let G be a connected graph. We denote the diameter of G by D(G). Let d be a positive integer and let x,y be two vertices of G. Let denote the set of vertices v so that the distance between x and v in G is at most d. We define δd(G) as the minimum value of over all vertices x of G. Let denote the set of vertices z such that the distance between x and z in G is at most d-1 and z is adjacent to y. We denote the larger of and by . We define η(G)=1 if G is complete and η(G) as the minimum of over all pair of vertices x,y of G otherwise. Let G and H be two connected graphs. Among other results, we prove that if δD(H)(G)?B(G)D(H)+1 and B(H)=⌈(|V(H)|+η(H)-2)/D(H)⌉, then B(G(SP)H)=B(G)|V(H)|+B(H). Moreover, we show that this result determines the bandwidth of the strong product of some classes of graphs. Furthermore, we study the bandwidth of the strong product of power of paths with complete bipartite graphs.  相似文献   

17.
A graph G satisfies the Ore-condition if d(x) + d(y) ≥ | V (G) | for any xy ■ E(G). Luo et al. [European J. Combin., 2008] characterized the simple Z3-connected graphs satisfying the Ore-condition. In this paper, we characterize the simple Z3-connected graphs G satisfying d(x) + d(y) ≥ | V (G) |-1 for any xy ■ E(G), which improves the results of Luo et al.  相似文献   

18.
In this paper, we study the nonlinear one-dimensional periodic wave equation with x-dependent coefficients u(x)ytt−(ux(x)yx)+g(x,t,y)=f(x,t) on (0,πR under the boundary conditions a1y(0,t)+b1yx(0,t)=0, a2y(π,t)+b2yx(π,t)=0 ( for i=1,2) and the periodic conditions y(x,t+T)=y(x,t), yt(x,t+T)=yt(x,t). Such a model arises from the forced vibrations of a nonhomogeneous string and the propagation of seismic waves in nonisotropic media. A main concept is the notion “weak solution” to be given in Section 2. For T is the rational multiple of π, we prove some important properties of the weak solution operator. Based on these properties, the existence and regularity of weak solutions are obtained.  相似文献   

19.
Let G be a graph with vertex set V and edge set E, and let A be an abelian group. A labeling f:VA induces an edge labeling f:EA defined by f(xy)=f(x)+f(y). For iA, let vf(i)=card{vV:f(v)=i} and ef(i)=card{eE:f(e)=i}. A labeling f is said to be A-friendly if |vf(i)−vf(j)|≤1 for all (i,j)∈A×A, and A-cordial if we also have |ef(i)−ef(j)|≤1 for all (i,j)∈A×A. When A=Z2, the friendly index set of the graph G is defined as {|ef(1)−ef(0)|:the vertex labelingf is Z2-friendly}. In this paper we completely determine the friendly index sets of 2-regular graphs. In particular, we show that a 2-regular graph of order n is cordial if and only if n?2 (mod 4).  相似文献   

20.
 Suppose G is a graph and T is a set of non-negative integers that contains 0. A T-coloring of G is an assignment of a non-negative integer f(x) to each vertex x of G such that |f(x)−f(y)|∉T whenever xyE(G). The edge span of a T-coloring−f is the maximum value of |f(x) f(y)| over all edges xy, and the T-edge span of a graph G is the minimum value of the edge span of a T-coloring of G. This paper studies the T-edge span of the dth power C d n of the n-cycle C n for T={0, 1, 2, …, k−1}. In particular, we find the exact value of the T-edge span of C n d for n≡0 or (mod d+1), and lower and upper bounds for other cases. Received: May 13, 1996 Revised: December 8, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号