首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
In this paper, two successive approximation techniques are presented for a class of large-scale nonlinear programming problems with decomposable constraints and a class of high-dimensional discrete optimal control problems, respectively. It is shown that: (a) the accumulation point of the sequence produced by the first method is a Kuhn-Tucker point if the constraint functions are decomposable and if the uniqueness condition holds; (b) the sequence converges to an optimum solution if the objective function is strictly pseudoconvex and if the constraint functions are decomposable and quasiconcave; and (c) similar conclusions for the second method hold also for a class of discrete optimal control problems under some assumptions.  相似文献   

2.
In this paper, we consider a class of optimal control problems involving a second-order, linear parabolic partial differential equation with Neumann boundary conditions. The time-delayed arguments are assumed to appear in the boundary conditions. A necessary and sufficient condition for optimality is derived, and an iterative method for solving this optimal control problem is proposed. The convergence property of this iterative method is also investigated.On the basis of a finite-element Galerkin's scheme, we convert the original distributed optimal control problem into a sequence of approximate problems involving only lumped-parameter systems. A computational algorithm is then developed for each of these approximate problems. For illustration, a one-dimensional example is solved.  相似文献   

3.
This paper describes a function space algorithm for the solution of a class of linear-quadratic optimal control problems.The research of the first author was supported by Senate Research Grant No. 8.187.17, University of Ilorin, Ilorin, Kwara State, Nigeria.The authors thank two anonymous referees for their useful and challenging suggestions and comments which improved the quality of this paper. The authors are also indebted to I. Orisamolu for carrying out the computing work.  相似文献   

4.
In this paper, we describe the implementation aspects of an optimization algorithm for optimal control problems with control, state, and terminal constraints presented in our earlier paper. The important aspect of the implementation is that, in the direction-finding subproblems, it is necessary only to impose the state constraint at relatively few points in the time involved. This contributes significantly to the algorithmic efficiency. The algorithm is applied to solve several optimal control problems, including the problem of the abort landing of an aircraft in the presence of windshear.  相似文献   

5.
6.
This paper deals with a class of optimal control problems in which the system is governed by a linear partial differential equation and the control is distributed and with constraints. The problem is posed in the framework of the theory of optimal control of systems. A numerical method is proposed to approximate the optimal control. In this method, the state space as well as the convex set of admissible controls are discretized. An abstract error estimate for the optimal control problem is obtained that depends on both the approximation of the state equation and the space of controls. This theoretical result is illustrated by some numerical examples from the literature.  相似文献   

7.
In this paper, we consider a class of optimal control problems in which the cost functional is the sum of the terminal cost, the integral cost, and the full variation of control. The term involving the full variation of control is to measure the changes on the control action. A computational method based on the control parametrization technique is developed for solving this class of optimal control problems. This computational method is supported by a convergence analysis. For illustration, two numerical examples are solved using the proposed method.This project was partially supported by an Australian Research Grant.This paper is dedicated to Professor L. Cesari on the occasion of his 80th birthday.  相似文献   

8.
For the class of functions of one variable, satisfying the Lipschitz condition with a fixed constant, an optimal passive algorithm for numerical integration (an optimal quadrature formula) has been found by Nikol'skii. In this paper, a sequentially optimal algorithm is constructed; i.e., the algorithm on each step makes use in an optimal way of all relevant information which was accumulated on previous steps. Using the algorithm, it is necessary to solve an integer program at each step. An effective algorithm for solving these problems is given.The author is indebted to Professor S. E. Dreyfus, Department of Industrial Engineering and Operations Research, University of California, Berkeley, California, for his helpful attention to this paper.  相似文献   

9.
This paper deals with optimal control problems described by higher index DAEs. We introduce a class of these problems which can be transformed to index one control problems. For this class of higher index DAEs, we derive first-order approximations and adjoint equations for the functionals defining the problem. These adjoint equations are then used to state, in the accompanying paper, the necessary optimality conditions in the form of a weak maximum principle. The constructive way used to prove these optimality conditions leads to globally convergent algorithms for control problems with state constraints and defined by higher index DAEs.  相似文献   

10.
Numerical methods are proposed for solving finite-dimensional convex problems with inequality constraints satisfying the Slater condition. A method based on solving the dual to the original regularized problem is proposed and justified for problems having a strictly uniformly convex sum of the objective function and the constraint functions. Conditions for the convergence of this method are derived, and convergence rate estimates are obtained for convergence with respect to the functional, convergence with respect to the argument to the set of optimizers, and convergence to the g-normal solution. For more general convex finite-dimensional minimization problems with inequality constraints, two methods with finite-step inner algorithms are proposed. The methods are based on the projected gradient and conditional gradient algorithms. The paper is focused on finite-dimensional problems obtained by approximating infinite-dimensional problems, in particular, optimal control problems for systems with lumped or distributed parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号