首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
非线性随机延迟微分方程Euler-Maruyama方法的均方稳定性   总被引:2,自引:0,他引:2  
王文强  黄山  李寿佛 《计算数学》2007,29(2):217-224
本文首先将数值方法的均方稳定性的概念MS-稳定与GMS-稳定从线性试验方程推广到一般非线性的情形,然后针对一维情形下的非线性随机延迟微分方程初值问题,证明了如果问题本身满足零解是均方渐近稳定的充分条件,那么当漂移项满足一定的限制条件时,Euler- Maruyama方法是MS-稳定的与带线性插值的Euler-Maruyama方法是GMS-稳定的理论结果.  相似文献   

2.
王琦  温洁嫦 《数学杂志》2015,35(2):307-317
本文研究了滞后型分段连续随机微分方程的解析稳定性和数值稳定性问题.首先,利用伊藤公式等方法获得了解析解均方稳定的条件,其次,对于包括均方稳定和T-稳定在内的Euler-Maruyama方法的数值稳定性问题,运用不等式技术和随机分析方法获得了一些新的结果,证明了在一定条件下,Euler-Maruyama方法既是均方稳定又是T-稳定的,推广了随机延迟微分方程的数值稳定性结论.  相似文献   

3.
本文研究了滞后型分段连续随机微分方程的解析稳定性和数值稳定性问题.首先,利用伊藤公式等方法获得了解析解均方稳定的条件,其次,对于包括均方稳定和T-稳定在内的Euler-Maruyama方法的数值稳定性问题,运用不等式技术和随机分析方法获得了一些新的结果,证明了在一定条件下,Euler-Maruyama方法既是均方稳定又是T-稳定的,推广了随机延迟微分方程的数值稳定性结论.  相似文献   

4.
本文首先研究了一维带跳随机微分方程的指数稳定性,并证明Euler-Maruyama(EM)方法保持了解析解的稳定性.其次,研究了多维带跳随机微分方程的稳定性,证明若系数满足全局Lipchitz条件,则EM方法能够很好地保持解析解的几乎处处指数稳定性、均方指数稳定性.最后,给出算例来支持所得结论的正确性.  相似文献   

5.
本文研究了数值求解非自治随机微分方程的正则Euler-Maruyama分裂(CEMS)方法,该方程的漂移项系数带有刚性且允许超线性增长,扩散项系数满足全局Lipschitz条件.首先,证明了CEMS方法的强收敛性及收敛速度.其次,证明了在适当条件下CEMS方法是均方稳定的.进一步,利用离散半鞅收敛定理,研究了CEMS方法的几乎必然指数稳定性.结果表明,CEMS方法在漂移系数的刚性部分满足单边Lipschitz条件下可保持几乎必然指数稳定性.最后通过数值实验,检验了CEMS方法的有效性并证实了我们的理论结果.  相似文献   

6.
本文研究了一类具有年龄结构的随机种群系统的数值解问题.在线性增长条件下,利用Euler-Maruyama(EM)方法讨论了具有年龄结构的随机种群系统的数值解的p阶矩渐近有界性,并获得了渐近有界性准则.最后,通过数值算例对所得的结论进行了验证.  相似文献   

7.
本文主要考察随机延迟微分方程截断型theta-EM (Euler-Maruyama)算法的强收敛性问题.将截断型EM算法推广到一般形式,提出截断型theta-EM算法,并讨论随机延迟微分方程在非全局Lipschitz条件下的强收敛率,得到其强收敛阶数.  相似文献   

8.
本文研究了一类新的模型问题:非线性随机分数阶延迟积分微分方程.当方程中的漂移项和扩散项满足全局Lipschitz条件和线性增长条件时,基于压缩映射原理给出了该方程解存在唯一的充分条件.由于理论求解的困难,构造了一种数值方法(Euler-Maruyama方法),并证得强收敛阶为α-1/2,α∈(1/2,1].最后通过数值试验,验证了这一理论结果.  相似文献   

9.
包学忠  胡琳  产蔼宁 《计算数学》2022,44(3):339-353
文应用指数Euler方法研究了线性随机变时滞微分方程的收敛性和稳定性;首先,证明了指数Euler方法是$\frac{1}{2}$阶均方收敛的;其次,在解析解均方稳定的前提下,通过跟Euler-Maruyama方法比较发现指数Euler方法在大步长下依然保持解析解的均方稳定性;最后,用数值试验验证了收敛和稳定的结果.  相似文献   

10.
给出了一类带时滞随机种群系统,通过Ito公式,在局部Lipschitz条件和广义Khasminskii-type条件下.运用Euler-Maruyama法讨论了带时滞随机种群系统数值解,并给出了渐进估计,通过数值算例对主要结果进行验证.  相似文献   

11.
In this paper, we consider strong convergence and almost sure exponential stability of the backward Euler-Maruyama method for nonlinear hybrid stochastic differential equations with time-variable delay. Under the local Lipschitz condition and polynomial growth condition, it is proved that the backward Euler-Maruyama method is strongly convergent. Additionally, the moment estimates and almost sure exponential stability for the analytical solution are proved. Also, under the appropriate condition, we show that the numerical solutions for the backward Euler-Maruyama methods are almost surely exponentially stable. A numerical experiment is given to illustrate the computational effectiveness and the theoretical results of the method.  相似文献   

12.
In this paper, we consider the Euler-Maruyama method for a class of stochastic Volterra integral equations (SVIEs). It is known that the strong convergence order of the Euler-Maruyama method is $\frac12$. However, the strong superconvergence order $1$ can be obtained for a class of SVIEs if the kernels $\sigma_{i}(t, t) = 0$ for $i=1$ and $2$; otherwise, the strong convergence order is $\frac12$. Moreover, the theoretical results are illustrated by some numerical examples.  相似文献   

13.
This paper establishes a method to study the exponential stability of Euler-Maruyama (EM) method for impulsive stochastic differential equations with delay. By using the properties of M-matrix and stochastic analysis technique, some conditions under which the EM solution is exponentially mean-square stable are obtained. Some examples are provided to illustrate the results.  相似文献   

14.
We consider a nonlinear stochastic Volterra integral equation with time-dependent delay and the corresponding Euler-Maruyama method in this paper. Strong convergence rate (at fixed point) of the corresponding Euler-Maruyama method is obtained when coefficients $f$ and $g$ both satisfy local Lipschitz and linear growth conditions. An example is provided to interpret our conclusions. Our result generalizes and improves the conclusion in [J. Gao, H. Liang, S. Ma, Strong convergence of the semi-implicit Euler method for nonlinear stochastic Volterra integral equations with constant delay, Appl. Math. Comput., 348 (2019) 385-398.]  相似文献   

15.
The key aim of this paper is to show the strong convergence of the truncated Euler-Maruyama method for neutral stochastic differential delay equations (NSDDEs) with Markovian switching (MS) without the linear growth condition. We present the truncated Euler-Maruyama method of NSDDEs-MS and consider its moment boundedness under the local Lipschitz condition plus Khasminskii-type condition. We also study its strong convergence rates at time $T$ and over a finite interval $[0, T]$. Some numerical examples are given to illustrate the theoretical results.  相似文献   

16.
In this paper, we develop the truncated Euler-Maruyama (EM) method for stochastic differential equations with piecewise continuous arguments (SDEPCAs), and consider the strong convergence theory under the local Lipschitz condition plus the Khasminskii-type condition. The order of convergence is obtained. Moreover, we show that the truncated EM method can preserve the exponential mean square stability of SDEPCAs. Numerical examples are provided to support our conclusions.  相似文献   

17.
The Balanced method was introduced as a class of quasi-implicit methods, based upon the Euler-Maruyama scheme, for solving stiff stochastic differential equations. We extend the Balanced method to introduce a class of stable strong order 1.0 numerical schemes for solving stochastic ordinary differential equations. We derive convergence results for this class of numerical schemes. We illustrate the asymptotic stability of this class of schemes is illustrated and is compared with contemporary schemes of strong order 1.0. We present some evidence on parametric selection with respect to minimising the error convergence terms. Furthermore we provide a convergence result for general Balanced style schemes of higher orders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号