首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
王卿文 《数学进展》1996,25(6):532-539
设F和Ω分别是一个任意的体和一个具有对合反自同构的有限维中心代数且charΩ≠2.本研究体上的下列矩阵方程:AX-XB=C,(1)AX-XB=C,(2)AX+XB=-C(3)分别给出了在Ω上(1)有一般解,(2)自共轭解及(3)有斜自共轭解的充要条件,并将W.E.Roth的相似定理推广到了任意的体F上。  相似文献   

2.
本文推广了文[1]的主要定理,给出了用低阶矩阵判定高阶矩阵正定的判定定理,同时给出了矩阵方程AX=B的反问题在正定矩阵类中解存在的充要条件及解的一般形式.  相似文献   

3.
本文研究了任意体上的矩阵方程[X(nn)A(ns),X(nn)B(nt)]=[A(ns),0](1)给出了(1)相容的充要条件、通解的表达式、解的性质及其实用解法.  相似文献   

4.
本文改进了文[1]的结果,利用体上矩阵的初等行和列变换,给出了任意体上的矩阵方程AmsXas=Bms的一种更为实用的简便解法。  相似文献   

5.
关于矩阵方程AXB=C   总被引:1,自引:0,他引:1  
关于矩阵方程AXB=C丁永臻(胜利油田师专数学系257097)文[1]给出了矩阵方程AXB=C有解和有唯一解的一个充要条件.本文借助于近代数学常用的矩阵广义逆、直积和拉直化运算的概念及性质详细讨论矩阵方程AXB=C解的一般理论,包括解的存在性、唯一性...  相似文献   

6.
求解线性矩阵方程的初等变换法杨兴东(南京气象学院基科系,南京210044)杨兴洲(南京大学成人教育学院,南京210093)文[1]给出了线性矩阵方程AXB=C有解的简单判别法则,本文则应用初等变换,给出矩阵方程AXB=C(1)的简便解法.引理1[2]...  相似文献   

7.
Roth定理在任意体上的推广   总被引:5,自引:1,他引:4  
本文给出了任意体上的矩阵方程AX—YB=C相容的两个充要条件,并给出了其一般解的表达式,从而推广了域上的W.E.Roth定理.  相似文献   

8.
环上矩阵方程AXB+CYD=E的可解性   总被引:6,自引:0,他引:6  
黄礼平 《数学进展》1997,26(3):269-275
设R为一个含幺环,应用矩阵的{1,2}-逆(存在的前提下),本文得到R上矩阵方程AXB+CYD=E有解的充要条件以及一般解的公式,并且推广了著名的Roth等价定理。  相似文献   

9.
黄礼平 《数学学报》1998,41(3):459-462
设HF为域F上广义四元数可除代数,其中charF≠2.应用伴随矩阵与矩阵表示方法,本文得到HF上矩阵方程∑ki=0AiXBi=E有解或有唯一解的几个充要条件,并且给出了几个解的公式.  相似文献   

10.
本文给出了一般线性矩阵方程AmnXns=Bms,XmnAns=Bms,AmnXnsBst=Cmt的解的结构定理,并介绍了一种利用初等变换求解上述三类线性矩阵方程的方法.  相似文献   

11.
连德忠 《数学研究》2012,(4):390-403
确立了某类分块矩阵[M(11) M12 XM21 Y M23Z M32 M33]的最大秩公式,其中,X,Y和Z是三个受限于四元数线性矩阵方程A1X=C1,XB1=C2,A2Y=D1,YB2=D2,A3Z=E1,ZB3=E2的变量矩阵.作为该公式的一项应用,我们推导出上述矩阵方程解集等同于某类四元数三次矩阵方程组A1X=C1,XB1=C2,A2Y=D1,YB2=D2,A3Z=E1,ZB3=E2,XYZ=J解集的条件.  相似文献   

12.
设Ai,Bi,Gi为给定的矩阵,i=1,2,S为||A1XB1-C1||2F+||A2XB2-C2||2F=min的解集,在给定矩阵X0的条件下,求X∈S;使得本文利用[6]的结果给出了X的表达式.  相似文献   

13.
设G为有限群,N是G的正规子群.记J=J(F[N])为F[N]的Jacobson根,I=Ann(J)={α∈F[G]|Jα=0}为J在F[G]中的零化子.本文主要研究了,根据F[G/N]和F[G]/I的Cartan矩阵,分解F[G]的Cartan矩阵.这种分解在Cartan不变量和G的合成因子之间建立了一些联系.本文指出N中p-亏零块的存在性依赖于Cartan不变量或者I在F[G]中的性质,证明了Cartan矩阵的分解部分地依赖于B所覆盖的N中的块的性质.本文研究了b为N上的块且l(b)=1时,覆盖b的G中的块B的性质.在两类情形下,本文证明了块代数上关于Brauer特征标次数的猜想成立,涵盖了Holm和Willems研究的某些情形.进而对Holm和Willems提出的问题给出了肯定的回答.另外,本文还给出了Cartan不变量的一些其它结果.  相似文献   

14.
We in this paper give a decomposition concerning the general matrix triplet over an arbitrary divisionring F with the same row or column numbers. We also design a practical algorithm for the decomposition of thematrix triplet. As applications, we present necessary and suficient conditions for the existence of the generalsolutions to the system of matrix equations DXA = C1, EXB = C2, F XC = C3 and the matrix equation AXD + BY E + CZF = Gover F. We give the expressions of the general solutions to the system a...  相似文献   

15.
TheMetapositiveDefiniteSelf-ConjugateSolutionoftheMatrixEquationAXB=Cover a Skew FieldWangQingwen(王卿文)(DepartmentofMath.,Chan...  相似文献   

16.
Lei X be an arbitrary smooth irreducible complex projective curve, E (?) X a rank two vector bundle generated by its sections. The author first represents E as a triple {D1,D2,f}, where D1 , D2 are two effective divisors with d = deg(D1) + deg(D2), and f ∈ H0(X, [D1] |D2) is a collection of polynomials. E is the extension of [D2] by [D1] which is determined by f. By using f and the Brill-Noether matrix of D1 + D2, the author constructs a 2g X d matrix WE whose zero space gives Im{H0(X,[D1]) (?) H0(X, [D1] |D1)}(?)Im{H0(X, E) (?) H0(X,[D2]) (?) H0(X,[D2] |D2)}. From this and H0(X,E) = H0(X, [D1]) (?) Im{H0(X, E) (?) H0(X, [D2])}, it is got in particular that dimH0(X, E) = deg(E) - rank(WE) + 2.  相似文献   

17.
借助于四元数体上自共轭矩阵的奇异值分解,给出了四元数矩阵方程AX+XB+CXD=F的极小范数最小二乘解.同时,在有解的条件下给出了Hermite最小二乘解及其通解的表达形式.  相似文献   

18.
矩阵方程X+AXB=C与线性流形上的矩阵最佳逼近   总被引:2,自引:1,他引:1  
该文给出了矩阵方程X+AXB=C存在唯一解的充分必要条件和解的表达式,该公式只是A,B,C的多项式,利用该结果,解决了A1XB1-C的解的表达式问题.  相似文献   

19.
Let \Omega be a field, and let F denote the Frobenius matrix: $[F = \left( {\begin{array}{*{20}{c}} 0&{ - {\alpha _n}}\{{E_{n - 1}}}&\alpha \end{array}} \right)\]$ where \alpha is an n-1 dimentional vector over Q, and E_n- 1 is identity matrix over \Omega. Theorem 1. There hold two elementary decompositions of Frobenius matrix: (i) F=SJB, where S, J are two symmetric matrices, and B is an involutory matrix; (ii) F=CQD, where O is an involutory matrix, Q is an orthogonal matrix over \Omega, and D is a diagonal matrix. We use the decomposition (i) to deduce the following two theorems: Theorem 2. Every square matrix over \Omega is a product of twe symmetric matrices and one involutory matrix. Theorem 3. Every square matrix over \Omega is a product of not more than four symmetric matrices. By using the decomposition (ii), we easily verify the following Theorem 4(Wonenburger-Djokovic') . The necessary and sufficient condition that a square matrix A may be decomposed as a product of two involutory matrices is that A is nonsingular and similar to its inverse A^-1 over Q (See [2, 3]). We also use the decomosition (ii) to obtain Theorem 5. Every unimodular matrix is similar to the matrix CQB, where C, B are two involutory matrices, and Q is an orthogonal matrix over Q. As a consequence of Theorem 5. we deduce immediately the following Theorem 6 (Gustafson-Halmos-Radjavi). Every unimodular matrix may be decomposed as a product of not more than four involutory matrices (See [1] ). Finally, we use the decomposition (ii) to derive the following Thoerem 7. If the unimodular matrix A possesses one invariant factor which is not constant polynomial, or the determinant of the unimodular matrix A is I and A possesses two invariant factors with the same degree (>0), then A may be decomposed as a product of three involutory matrices. All of the proofs of the above theorems are constructive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号