首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Counting problems offer rich opportunities for students to engage in mathematical thinking, but they can be difficult for students to solve. In this paper, we present a study that examines student thinking about one concept within counting, factorials, which are a key aspect of many combinatorial ideas. In an effort to better understand students’ conceptions of factorials, we conducted interviews with 20 undergraduate students. We present a key distinction between computational versus combinatorial conceptions, and we explore three aspects of data that shed light on students’ conceptions (their initial characterizations, their definitions of 0!, and their responses to Likert-response questions). We present implications this may have for mathematics educators both within and separate from combinatorics.  相似文献   

2.
This study explores how students learn to create, discuss, and reason with representations to solve problems. A summer school algebra class for seventh and eighth graders provided opportunities for students to create and use representations as problem-solving tools. This case study follows the learning trajectories of three boys. Two of the three boys had been low-achievers in their previous math classes, and one was a high achiever. Analysis of all three boys’ written work reveals how their representations became more sophisticated over time. Their small group interactions while problem-solving also show changes in how they communicated and reasoned with representations. For these boys, representation functioned as a learning practice. Through constructing and reasoning with representations, the boys were able to engage in generalizing and justifying claims, discuss quadratic growth, and collaborate and persist in problem-solving. Negotiating different student-constructed representations of a problem also gave them opportunities to act with agency, as they made choices and judgments about the validity of the different perspectives. These findings have implications for the importance of giving all students access to mathematics through representations, with representational thinking serving as a central disciplinary practice and as a learning practice that supports further mathematics learning.  相似文献   

3.
Katie Makar  Sue Allmond 《ZDM》2018,50(7):1139-1150
Children have limited exposure to statistical concepts and processes, yet researchers have highlighted multiple benefits of experiences in which they design and/or engage informally with statistical modelling. A study was conducted with a classroom in which students developed and utilised data-based models to respond to the inquiry question, Which origami animal jumps the furthest? The students used hat plots and box plots in Tinkerplots to make sense of variability in comparing distributions of their data and to support them to write justified conclusions of their findings. The study relied on classroom video and student artefacts to analyse aspects of the students’ modelling experiences which exposed them to powerful statistical ideas, such as key repeatable structures and dispositions in statistics. Three principles—purpose, process and prediction—are highlighted as ways in which the problem context, statistical structures and inquiry dispositions and cycle extended students’ opportunities to reason in sophisticated ways appropriate for their age. The research question under investigation was, How can an emphasis on purpose, process and prediction be implemented to support children’s statistical modelling? The principles illustrated in the study may provide a simple framework for teachers and researchers to develop statistical modelling practices and norms at the school level.  相似文献   

4.
The purpose of this study was to assess the impact a community‐based service learning program might have on preservice teachers' science instruction during student teaching. Designed to promote science inquiry, preservice teachers learned how to offer students more opportunities to develop their own ways of thinking through utilization of an afterschool science program that provided them extended opportunities to practice their science teaching skills. Three preservice teachers were followed to examine and evaluate the transfer of this experience to their student teaching classroom. Investigation methods included field observations and semi‐structured, individual interviews. Findings indicate that preservice teachers expanded their ideas of science inquiry instruction to include multiple modes of formative assessment, while also struggling with the desire to give students the correct answer. While the participants' experiences are few in number, the potential of afterschool teaching experience serving as an effective learning experience in preservice teacher preparation is significant. With the constraints of high‐stakes testing, community‐based service learning teaching opportunities for elementary and middle‐school preservice teachers can support both the development and refinement of inquiry instruction skills.  相似文献   

5.
Helen M. Doerr Prof. 《ZDM》2006,38(3):255-268
In this paper, I present the results of a case study of the practices of four experienced secondary teachers as they engaged their students in the initial development of mathematical models for exponential growth. The study focuses on two related aspects of their practices: (a) when, how and to what extent they saw and interpreted students' ways of thinking about exponential functions and (b) how they responded to the students' thinking in their classroom practice. Through an analysis of the teachers' actions in the classroom, I describe the teachers' developing knowledge when using modeling tasks with secondary students. The analysis suggests that there is considerable variation in the approaches that teachers take in listening to and responding to students' emerging mathematical models. Having a well-developed schema for how students might approach the task enabled one teacher to press students to express, evaluate, and revise their emerging models of exponential growth. Implications for the knowledge needed to teach mathematics through modeling are discussed.  相似文献   

6.
As standards-based mathematics curricula are used to guide learning, it is important to capture not just data on achievement but data on the way in which students respond to and interact in a standards-based instructional setting. In this study, sixth and seventh graders reacted through letters to using one of two standards-based curriculum projects (Connected Mathematics Project or Six Through Eight Mathematics). Letters were analyzed by class, by teacher, and by curriculum project. Findings suggest that across classrooms students were positive toward applications, hands-on activities, and working collaboratively. The level of students' enthusiasm for the new curricula varied much from class to class, further documenting the critical role teachers play in influencing students' perceptions of their mathematics learning experiences. The results illustrate that, while these curricula contain rich materials and hold much promise, especially in terms of their activities and applications, their success with students is dependent on the teacher.  相似文献   

7.
ABSTRACT

The purpose of this study is to explore the perceptions mathematics students have of the knowledge and skills they develop throughout their programme of study. It addresses current concerns about the employability of mathematics graduates by contributing much needed insight into how degree programmes are developing broader learning outcomes for students majoring in mathematics. Specifically, the study asked students who were close to completing a mathematics major (n = 144) to indicate the extent to which opportunities to develop mathematical knowledge along with more transferable skills (communication to experts and non-experts, writing, working in teams and thinking ethically) were included and assessed in their major. Their perceptions were compared to the importance they assign to each of these outcomes, their own assessment of improvement during the programme and their confidence in applying these outcomes. Overall, the findings reveal a pattern of high levels of students’ agreement that these outcomes are important, but evidence a startling gap when compared to students’ perceptions of the extent to which many of these – communication, writing, teamwork and ethical thinking – are actually included and assessed in the curriculum, and their confidence in using such learning.  相似文献   

8.
This article describes the authors’ use of three game shows – Survivor, The Biggest Loser, and Deal or No Deal? – to determine to what degree students engaged in mathematical thinking: specializing, conjecturing, generalizing, and convincing ( Burton, 1984). Student responses to the task of creating winning strategies to these shows were collected and analyzed. The data showed that students generally did not engage in the process of mathematical thinking unless directed to do so and the effects this had on the students’ responses is discussed.  相似文献   

9.
Since its publication in 1967, van Heijenoort??s paper, ??Logic as Calculus and Logic as Language?? has become a classic in the historiography of modern logic. According to van Heijenoort, the contrast between the two conceptions of logic provides the key to many philosophical issues underlying the entire classical period of modern logic, the period from Frege??s Begriffsschrift (1879) to the work of Herbrand, G?del and Tarski in the late 1920s and early 1930s. The present paper is a critical reflection on some aspects of van Heijenoort??s thesis. I concentrate on the case of Frege and Russell and the claim that their philosophies of logic are marked through and through by acceptance of the universalist conception of logic, which is an integral part of the view of logic as language. Using the so-called ??Logocentric Predicament?? (Henry M. Sheffer) as an illustration, I shall argue that the universalist conception does not have the consequences drawn from it by the van Heijenoort tradition. The crucial element here is that we draw a distinction between logic as a universal science and logic as a theory. According to both Frege and Russell, logic is first and foremost a universal science, which is concerned with the principles governing inferential transitions between propositions; but this in no way excludes the possibility of studying logic also as a theory, i.e., as an explicit formulation of (some) of these principles. Some aspects of this distinction will be discussed.  相似文献   

10.
11.
Cross-national research studies such as the Program for International Student Assessment and the Third International Mathematics and Science Study (TIMSS) have contributed much to our understandings regarding country differences in student achievement in mathematics, especially at the primary (elementary) and lower secondary (middle school) levels. TIMSS, especially, has demonstrated the central role that the concept of opportunity to learn plays in understanding cross-national differences in achievement Schmidt et al., (Why schools matter: A cross-national comparison of curriculum and learning  2001). The curricular expectations of a nation and the actual content exposure that is delivered to students by teachers were found to be among the most salient features of schooling related to academic performance. The other feature that emerges in these studies is the importance of the teacher. The professional competence of the teacher which includes substantive knowledge regarding formal mathematics, mathematics pedagogy and general pedagogy is suggested as being significant—not just in understanding cross-national differences but also in other studies as well (Hill et al. in Am Educ Res J 42(2):371–406, 2005). Mathematics Teaching in the 21st Century (MT21) is a small, six-country study that collected data on future lower secondary teachers in their last year of preparation. One of the findings noted in the first report of that study was that the opportunities future teachers experienced as part of their formal education varied across the six countries (Schmidt et al. in The preparation gap: Teacher education for middle school mathematics in six countries, 2007). This variation in opportunity to learn (OTL) existed in course work related to formal mathematics, mathematics pedagogy and general pedagogy. It appears from these initial results that OTL not only is important in understanding K-12 student learning but it is also likely important in understanding the knowledge base of the teachers who teach them which then has the potential to influence student learning as well. This study using the same MT21 data examines in greater detail the configuration of the educational opportunities future teachers had during their teacher education in some 34 institutions across the six countries.  相似文献   

12.
Quality of interaction can enhance or constrain students’ mathematical learning opportunities. However, quantitative video studies have measured the quality of interaction with very heterogeneous conceptualizations and operationalizations. This project sought to disentangle typical methodological choices to assess interaction quality in six quality dimensions, each of them in task-based, move-based, and practice-based operationalizations. The empirical part of the study compared different conceptualizations with their corresponding operationalizations and used them to code video data from middle school students (n = 210) organized into 49 small groups who worked on the same curriculum materials. The analysis revealed that different conceptualizations and operationalizations led to substantially different findings, so their distinction turned out to be of high methodological relevance. These results highlight the importance of making methodological choices explicit and call for a stronger academic discourse on how to conceptualize and operationalize interaction quality in video studies.  相似文献   

13.
We present a complete, decidable logic for reasoning about a notion of completely trustworthy (“conclusive”) evidence and its relations to justifiable (implicit) belief and knowledge, as well as to their explicit justifications. This logic makes use of a number of evidence-related notions such as availability, admissibility, and “goodness” of a piece of evidence, and is based on an innovative modification of the Fitting semantics for Artemov?s Justification Logic designed to preempt Gettier-type counterexamples. We combine this with ideas from belief revision and awareness logics to provide an account for explicitly justified (defeasible) knowledge based on conclusive evidence that addresses the problem of (logical) omniscience.  相似文献   

14.
In this paper, we report on an experimental activity for discussing the concepts of speed, instantaneous speed and acceleration, generally introduced in first year university courses of calculus or physics. Rather than developing the ideas of calculus and using them to explain these basic concepts for the study of motion, we led 82 first year university students through Galileo's experiments designed to investigate the motion of falling bodies, and his geometrical explanation of his results, via simple dynamic geometric applets designed with GeoGebra. Our goal was to enhance the students’ development of mathematical thinking. Through a scholarship of teaching and learning study design, we captured data from students before, during and after the activity. Findings suggest that the historical development presented to the students helped to show the growth and evolution of the ideas and made visible authentic ways of thinking mathematically. Importantly, the activity prompted students to question and rethink what they knew about speed and acceleration, and also to appreciate the novel concepts of instantaneous speed and acceleration at which Galileo arrived.  相似文献   

15.
16.
Conceptual blending describes how humans condense information, combining it in novel ways. The blending process may create global insight or new detailed connections, but it may also result in a loss of information, causing confusion. In this paper, we describe the proof writing process of a group of four students in a university geometry course proving a statement of the form conditional implies conditional, i.e., (p  q)  (r  s). We use blending theory to provide insight into three diverse questions relevant for proof writing: (1) Where do key ideas for proofs come from?, (2) How do students structure their proofs and combine those structures with their more intuitive ideas?, and (3) How are students reasoning when they fail to keep track of the implication structure of the statements that they are using? We also use blending theory to describe the evolution of the students’ proof writing process through four episodes each described by a primary blend.  相似文献   

17.
This paper focuses on a portion of a research project involving a group of inner-city middle school students who used SimCalc simulation software over the course of an entire school year to investigate ideas relating to graphical representations of motion and speed. The classroom environment was one in which students openly defended and justified their thinking as they actively explored and solved rich mathematical problems. The activities, generally speaking, involved functions that were intended to tap students’ real world intuitions as well as prior mathematical skills and understandings about speed, motion, and other graphical representations that underlie the mathematics of motion. Results indicate that these students did build ideas related to those concepts. This paper will provide documentation of the ways in which these students interpreted graphical representations involving linear and quadratic functions that are associated with constant and linearly changing velocities, respectively.  相似文献   

18.
In [13] Parikh proved the first mathematical result about concrete consistency of contradictory theories. In [6] it is shown that the bounds of concrete consistency given by Parikh are optimal. This was proved by noting that very large numbers can be actually constructed through very short proofs. A more refined analysis of these short proofs reveals the presence of cyclic paths in their logical graphs. Indeed, in [6] it is shown that cycles need to exist for the proofs to be short. Here, we present a new sequent calculus for classical logic which is close to linear logic in spirit, enjoys cut-elimination, is acyclic and its proofs are just elementary larger than proofs in LK. The proofs in the new calculus can be obtained by a small perturbation of proofs in LK and they represent a geometrical alternative for studying structural properties of LK-proofs. They satisfy the constructive disjunction property and most important, simpler geometrical properties of their logical graphs. The geometrical counterpart to a cycle in LK is represented in the new setting by a spiral which is passing through sets of formulas logically grouped together by the nesting of their quantifiers.  相似文献   

19.
This paper reports on the mathematical thinking of participants of a long-term study, now in its 17th year, who did mathematics together through their public school and early university years. In particular, it describes how fundamental ideas and images of a cohort group of students are elaborated and presented in symbolic expressions of generalized mathematical ideas while exploring problems in grades 10 and 11. From high school and university interview data, we learn from participants how they viewed their mathematical activity in structuring their investigations and justifying their solutions.  相似文献   

20.
Using qualitative data collection and analyses techniques, we examined mathematical representations used by sixteen (N = 16) teachers while teaching the concepts of converting among fractions, decimals, and percents. We also studied representational choices by their students (N = 581).In addition to using geometric figures and manipulatives, teachers used natural language such as the words nanny and house to characterize mathematical procedures or algorithms. Some teachers used the words or phrases bigger, smaller, doubling, and building-up in the context of equivalent fractions. There was widespread use of idiosyncratic representations by teachers and students, specifically equations with missing equals signs and not multiply/dividing by one to find equivalent fractions. No evidence though of a relationship between representational forms and degree of correctness of solutions was found on student work. However, when students exhibited misconceptions, those misconceptions were linked to teachers’ use of idiosyncratic representations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号