首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In this paper, the multi-symplectic Fourier pseudospectral (MSFP) method is generalized to solve two-dimensional Hamiltonian PDEs with periodic boundary conditions. Using the Fourier pseudospectral method in the space of the two-dimensional Hamiltonian PDE (2D-HPDE), the semi-discrete system obtained is proved to have semi-discrete multi-symplectic conservation laws and a global symplecticity conservation law. Then, the implicit midpoint rule is employed for time integration to obtain the MSFP method for the 2D-HPDE. The fully discrete multi-symplectic conservation laws are also obtained. In addition, the proposed method is applied to solve the Zakharov–Kuznetsov (ZK) equation and the Kadomtsev–Petviashvili (KP) equation. Numerical experiments on soliton solutions of the ZK equation and the KP equation show the high accuracy and effectiveness of the proposed method.  相似文献   

2.
The higher order wave equation of KdV type, which describes many important physical phenomena, has been investigated widely in last several decades. In this work, multi-symplectic formulations for the higher order wave equation of KdV type are presented, and the local conservation laws are shown to correspond to certain well-known Hamiltonian functionals. The multi-symplectic discretization of each formulation is calculated by the multi-symplectic Fourier pseudospectral scheme. Numerical experiments are carried out, which verify the efficiency of the Fourier pseudospectral method.  相似文献   

3.
In this paper, we find that the Ito-type coupled KdV equation can be written as a multi-symplectic Hamiltonian partial differential equation (PDE). Then, multi-symplectic Fourier pseudospectral method and multi-symlpectic wavelet collocation method are constructed for this equation. In the numerical experiments, we show the effectiveness of the proposed methods. Some comparisons between the proposed methods are also made with respect to global conservation properties.  相似文献   

4.
In this paper, we consider multi-symplectic Fourier pseudospectral method for a high order integrable equation of KdV type, which describes many important physical phenomena. The multi-symplectic structure are constructed for the equation, and the conservation laws of the continuous equation are presented. The multisymplectic discretization of each formulation is exemplified by the multi-symplectic Fourier pseudospectral scheme. The numerical experiments are given, and the results verify the efficiency of the Fourier pseudospectral method.  相似文献   

5.
In this paper, we develop symplectic and multi-symplectic wavelet collocation methods to solve the two-dimensional nonlinear Schrödinger equation in wave propagation problems and the two-dimensional time-dependent linear Schrödinger equation in quantum physics. The Hamiltonian and the multi-symplectic formulations of each equation are considered. For both formulations, wavelet collocation method based on the autocorrelation function of Daubechies scaling functions is applied for spatial discretization and symplectic method is used for time integration. The conservation of energy and total norm is investigated. Combined with splitting scheme, splitting symplectic and multi-symplectic wavelet collocation methods are also constructed. Numerical experiments show the effectiveness of the proposed methods.  相似文献   

6.
Zhiber-Shabat方程,描述许多重要的物理现象,是一类重要的非线性方程,有着许多广泛的应用前景.本文给出Zhiber-Shabat方程的多辛几何结构和多辛Fourier拟谱方法.数值算例结果表明多辛离散格式具有较好的长时间的数值稳定性.  相似文献   

7.
The multi-symplectic geometry for the GSDBM equation is presented in this paper. The multi-symplectic formulations for the GSDBM equation are presented and the local conservation laws are shown to correspond to certain well-known Hamiltonian func-tionals. The multi-symplectic discretization of each formulation is exemplified by the multi-symplectic Preissmann scheme. The numerical experiments are given, and the results verify the efficiency of the Preissmann scheme.  相似文献   

8.
带乘性噪声的空间分数阶随机非线性Schrödinger方程是一类重要的方程,可应用于描述开放非局部量子系统的演化过程.该方程为一个无穷维分数阶随机Hamilton系统,且具有广义多辛结构和质量守恒的性质.针对该方程的广义多辛形式,在空间上采用拟谱方法离散分数阶微分算子,在时间上则采用隐式中点格式,构造出一类保持全局质量的广义多辛格式.对行波解和平面波解等进行数值模拟,结果验证了所构造格式的有效性和保结构性质,时间均方收敛阶约在0.5到1之间.  相似文献   

9.
Geometric discretizations that preserve certain Hamiltonian structures at the discrete level has been proven to enhance the accuracy of numerical schemes. In particular, numerous symplectic and multi-symplectic schemes have been proposed to solve numerically the celebrated Korteweg-de Vries equation. In this work, we show that geometrical schemes are as much robust and accurate as Fourier-type pseudospectral methods for computing the long-time KdV dynamics, and thus more suitable to model complex nonlinear wave phenomena.  相似文献   

10.
DGH方程作为一类重要的非线性水波方程有着许多广泛的应用前景.基于Hamilton系统的多辛理论研究了一类强色散DGH方程的数值解法,利用多辛普雷斯曼方法构造了一种典型的半隐式的多辛格式.分析了该格式的局部能量和动量守恒律误差,并给出了数值算例.数值算例结果表明该多辛离散格式具有较好的长时间数值稳定性.  相似文献   

11.
The multi-symplectic geometry for the GSDBM equation is presented in this paper. The multi-symplectic formulations for the GSDBM equation are presented and the local conservation laws are shown to correspond to certain well-known Hamiltonian functionals. The multi-symplectic discretization of each formulation is exemplified by the multisymplectic Preissmann scheme. The numerical experiments are given, and the results verify the efficiency of the Preissmann scheme.  相似文献   

12.
The main objective of this paper is to present an efficient structure-preserving scheme, which is based on the idea of the scalar auxiliary variable approach, for solving the two-dimensional space-fractional nonlinear Schrödinger equation. First, we reformulate the equation as an canonical Hamiltonian system, and obtain a new equivalent system via introducing a scalar variable. Then, we construct a semi-discrete energy-preserving scheme by using the Fourier pseudo-spectral method to discretize the equivalent system in space direction. After that, applying the Crank-Nicolson method on the temporal direction gives a linearly-implicit scheme in the fully-discrete version. As expected, the proposed scheme can preserve the energy exactly and more efficient in the sense that only decoupled equations with constant coefficients need to be solved at each time step. Finally, numerical experiments are provided to demonstrate the efficiency and conservation of the scheme.  相似文献   

13.
In this paper, a Fourier spectral method with an adaptive time step strategy is proposed to solve the fractional nonlinear Schrödinger (FNLS) equation with periodic initial value problem. First, we prove the conservation law of the mass and the energy for the semi-discrete Fourier spectral scheme. Second, the error estimation of the semi-discrete scheme is given in the relevant fractional Sobolev space. Then, an adaptive time-step strategy is designed to reduce central processing unit (CPU) time. Finally, the numerical experiments for the one-, two- and three-dimensional FNLSs, show that the adaptive strategy, compared to the constant time step, can reduce the CPU-time by almost half.  相似文献   

14.
研究了不可压饱和多孔弹性杆的一维动力响应问题.基于多孔介质理论,在流相和固相微观不可压、固相骨架小变形的假定下,建立了不可压流体饱和多孔弹性杆一维轴向动力响应的数学模型.利用Hamilton空间体系的多辛理论,构造了不可压饱和多孔弹性杆轴向振动方程的多辛形式及其多种局部守恒律.采用中点Box离散方法得到轴向振动方程的多辛离散格式和局部能量守恒律以及局部动量守恒律的离散格式;数值模拟了不可压饱和多孔弹性杆的轴向振动过程,记录了每一时间步的局部能量数值误差和局部动量数值误差.结果表明,已构造的多辛离散格式具有很高的精确性和较长时间的数值稳定性,这为解决饱和多孔介质的动力响应问题提供了新的途径.  相似文献   

15.
This paper gives a rigorous error analysis of the multisymplectic Fourier pseudospectral method for the nonlinear fractional Schrödinger equation. The method preserves some intrinsic structure properties including the generalized multisymplectic conservation law. By rewriting it in a matrix form similar to that in the finite difference method, the method is shown to be convergent in the discrete L2 norm with the second-order accuracy in time and spectral accuracy in space. The key techniques in the analysis include the discrete energy method, cutoff of the nonlinearity, and a posterior bound of numerical solutions by using the inverse inequality. In a similar line, the convergence result for the symplectic Fourier pseudospectral method can also be established. Moreover, the errors in the local and global energy conservation laws of discrete systems are also investigated. Numerical tests are performed to confirm the theoretical results.  相似文献   

16.
The fourth order average vector field (AVF) method is applied to solve the "Good" Boussinesq equation. The semi-discrete system of the "good" Boussinesq equation obtained by the pseudo-spectral method in spatial variable, which is a classical finite dimensional Hamiltonian system, is discretized by the fourth order average vector field method. Thus, a new high order energy conservation scheme of the "good" Boussinesq equation is obtained. Numerical experiments confirm that the new high order scheme can preserve the discrete energy of the "good" Boussinesq equation exactly and simulate evolution of different solitary waves well.  相似文献   

17.
Since many physical phenomena are often influenced by dispersive medium, energy compensation and random perturbation, exploring the dynamic behaviors of the damped-driven stochastic system has becoming a hot topic in mathematical physics in recent years. In this paper, inspired by the stochastic conformal structure, we investigate the geometric numerical integrators for the damped-driven stochastic nonlinear Schrödinger equation with multiplicative noise. To preserve the conformal structures of the system, by using symplectic Euler method, implicit midpoint method and Fourier pseudospectral method, we propose three kinds of stochastic conformal schemes satisfying corresponding discrete stochastic multiconformal-symplectic conservation laws and discrete global/local charge conservation laws. Numerical experiments illustrate the structure-preserving properties of the proposed schemes, as well as favorable results over traditional nonconformal schemes, which are consistent with our theoretical analysis.  相似文献   

18.
In this study, we present a conservative local discontinuous Galerkin(LDG) method for numerically solving the two-dimensional nonlinear Schrdinger(NLS) equation. The NLS equation is rewritten as a firstorder system and then we construct the LDG formulation with appropriate numerical flux. The mass and energy conserving laws for the semi-discrete formulation can be proved based on different choices of numerical fluxes such as the central, alternative and upwind-based flux. We will propose two kinds of time discretization methods for the semi-discrete formulation. One is based on Crank-Nicolson method and can be proved to preserve the discrete mass and energy conservation. The other one is Krylov implicit integration factor(IIF) method which demands much less computational effort. Various numerical experiments are presented to demonstrate the conservation law of mass and energy, the optimal rates of convergence, and the blow-up phenomenon.  相似文献   

19.
本文讨论了广义混合非线性Schrodinger方程的周期初值问题,构造了守恒的半离散Fourier拟谱格式,对其近似解进行了先验估计,并证明了格式的收敛性.证明了该方程存在孤立子解,并给出其孤立子解的精确表达式.研究了线性化方程的稳定性问题,即在初值有扰动的情况下,该方程只有振荡解和鞍点.最后,通过数值例子验证了格式的可信性,数值计算表明,本格式时间方向可取大步长且是长时间稳定的,我们还计算了孤立子解,并绘出了在初值有扰动的情况下,相空间的轨线图.  相似文献   

20.
This article proposes a class of high‐order energy‐preserving schemes for the improved Boussinesq equation. To derive the energy‐preserving schemes, we first discretize the improved Boussinesq equation by Fourier pseudospectral method, which leads to a finite‐dimensional Hamiltonian system. Then, the obtained semidiscrete system is solved by Hamiltonian boundary value methods, which is a newly developed class of energy‐preserving methods. The proposed schemes can reach spectral precision in space, and in time can reach second‐order, fourth‐order, and sixth‐order accuracy, respectively. Moreover, the proposed schemes can conserve the discrete mass and energy to within machine precision. Furthermore, to show the efficiency and accuracy of the proposed methods, the proposed methods are compared with the finite difference methods and the finite volume element method. The results of several numerical experiments are given for the propagation of the single solitary wave, the interaction of two solitary waves and the wave break‐up.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号