首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
潘春平 《计算数学》2014,36(3):231-244
本文研究了鞍点问题的迭代法.在Benzi等人提出的维数分裂(DS)迭代方法的基础上,提出了具有三个参数的广义维数分裂(GDS)迭代法,该方法包含了DS迭代法,理论分析表明该方法是无条件收敛的.通过对有限差分法和有限元法离散的Stokes问题及有限元法离散的Oseen问题的数值结果表明,本文所给方法是有效的.  相似文献   

2.
In this paper we consider second order scalar elliptic boundary value problems posed over three–dimensional domains and their discretization by means of mixed Raviart–Thomas finite elements [18]. This leads to saddle point problems featuring a discrete flux vector field as additional unknown. Following Ewing and Wang [26], the proposed solution procedure is based on splitting the flux into divergence free components and a remainder. It leads to a variational problem involving solenoidal Raviart–Thomas vector fields. A fast iterative solution method for this problem is presented. It exploits the representation of divergence free vector fields as s of the –conforming finite element functions introduced by Nédélec [43]. We show that a nodal multilevel splitting of these finite element spaces gives rise to an optimal preconditioner for the solenoidal variational problem: Duality techniques in quotient spaces and modern algebraic multigrid theory [50, 10, 31] are the main tools for the proof. Received November 4, 1996 / Revised version received February 2, 1998  相似文献   

3.
Extrapolation with a parallel splitting method is discussed. The parallel splitting method reduces a multidimensional problem into independent one-dimensional problems and can improve the convergence order of space variables to an order as high as the regularity of the solution permits. Therefore, in order to match the convergence order of the space variables, a high order method should also be used for the time integration. Second and third order extrapolation methods are used to improve the time convergence and it was found that the higher order extrapolation method can produce a more accurate solution than the lower order extrapolation method, but the convergence order of high order extrapolation may be less than the actual order of the extrapolation. We also try to show a fact that has not been studied in the literature, i.e. when the extrapolation is used, it may decrease the convergence of the space variables. The higher the order of the extrapolation method, the more it decreases the convergence of the space variables. The global extrapolation method also improves the parallel degree of the parallel splitting method. Numerical tests in the paper are done in a domain of a unit circle and a unit square.Supported by the Academy of Finland.  相似文献   

4.
This paper is concerned with a compact locally one-dimensional (LOD) finite difference method for solving two-dimensional nonhomogeneous parabolic differential equations. An explicit error estimate for the finite difference solution is given in the discrete infinity norm. It is shown that the method has the accuracy of the second-order in time and the fourth-order in space with respect to the discrete infinity norm. A Richardson extrapolation algorithm is developed to make the final computed solution fourth-order accurate in both time and space when the time step equals the spatial mesh size. Numerical results demonstrate the accuracy and the high efficiency of the extrapolation algorithm.  相似文献   

5.
Two-grid finite volume element discretization techniques, based on two linear conforming finite element spaces on one coarse and one fine grid, are presented for the two-dimensional second-order non-selfadjoint and indefinite linear elliptic problems and the two-dimensional second-order nonlinear elliptic problems. With the proposed techniques, solving the non-selfadjoint and indefinite elliptic problem on the fine space is reduced into solving a symmetric and positive definite elliptic problem on the fine space and solving the non-selfadjoint and indefinite elliptic problem on a much smaller space; solving a nonlinear elliptic problem on the fine space is reduced into solving a linear problem on the fine space and solving the nonlinear elliptic problem on a much smaller space. Convergence estimates are derived to justify the efficiency of the proposed two-grid algorithms. A set of numerical examples are presented to confirm the estimates. The work is supported by the National Natural Science Foundation of China (Grant No: 10601045).  相似文献   

6.
In this paper, a fully discrete defect-correction mixed finite element method (MFEM) for solving the non-stationary conduction-convection problems in two dimension, which is leaded by combining the Back Euler time discretization with the two-step defect correction in space, is presented. In this method, we solve the nonlinear equations with an added artificial viscosity term on a finite element grid and correct these solutions on the same grid using a linearized defect-correction technique. The stability and the error analysis are derived. The theory analysis shows that our method is stable and has a good convergence property. Some numerical results are also given, which show that this method is highly efficient for the unsteady conduction-convection problems.  相似文献   

7.
This work deals with the efficient numerical solution of a class of nonlinear time-dependent reaction-diffusion equations. Via the method of lines approach, we first perform the spatial discretization of the original problem by applying a mimetic finite difference scheme. The system of ordinary differential equations arising from that process is then integrated in time with a linearly implicit fractional step method. For that purpose, we locally decompose the discrete nonlinear diffusion operator using suitable Taylor expansions and a domain decomposition splitting technique. The totally discrete scheme considers implicit time integrations for the linear terms while explicitly handling the nonlinear ones. As a result, the original problem is reduced to the solution of several linear systems per time step which can be trivially decomposed into a set of uncoupled parallelizable linear subsystems. The convergence of the proposed methods is illustrated by numerical experiments.  相似文献   

8.
A dual-parametric finite element method is introduced in this paper for the computation of singular minimizers in the 2D cavitation problem in nonlinear elasticity. The method overcomes the difficulties, such as the mesh entanglement and material interpenetration, generally encountered in the finite element approximation of problems with extremely large expansionary deformation. Numerical experiments show that the method is highly efficient in the computation of cavitation problems. Numerical experiments are also conducted on discrete problems without the radial symmetry to show the validity of the method to more general settings and the potential of its application to the study of mechanism of cavity nucleation in nonlinear elastic materials.  相似文献   

9.
Splitting extrapolation for solving second order elliptic systems with curved boundary in by using isoparametric d-quadratic element Q2 is presented, which is a new technique for solving large scale scientific and engineering problems in parallel. By means of domain decomposition, a large scale multidimensional problem with curved boundary is turned into many discrete problems involving several grid parameters. The multivariate asymptotic expansions of isoparametric d-quadratic Q2 finite element errors with respect to independent grid parameters are proved for second order elliptic systems. Therefore after solving smaller problems with similar sizes in parallel, a global fine grid approximation with higher accuracy is computed by the splitting extrapolation method.  相似文献   

10.
Within the framework of finite element methods, the paper investigates a general approximation technique for the nonlinear convective term of the Navier–Stokes equations. The approach is based on an upwind method of finite volume type. It is proved that the discrete convective term satisfies a well‐known collection of sufficient conditions for convergence of the finite element solution. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
Summary A widely used technique for improving the accuracy of solutions of initial value problems in ordinary differential equations is local extrapolation. It is well known, however, that when using methods appropriate for solving stiff systems of ODES, the stability of the method can be seriously degraded if local extrapolation is employed. This is due to the fact that performing local extrapolation on a low order method is equivalent to using a higher order formula and this high order formula may not be suitable for solving stiff systems. In the present paper a general approach is proposed whereby the correction term added on in the process of local extrapolation is in a sense a rational, rather than a polynomial, function. This approach allows high order formulae with bounded growth functions to be developed. As an example we derive anA-stable rational correction algorithm based on the trapezoidal rule. This new algorithm is found to be efficient when low accuracy is requested (say a relative accuracy of about 1%) and its performance is compared with that of the more familiar Richardson extrapolation method on a large set of stiff test problems.  相似文献   

12.
Summary This paper studies finite element methods for a class of arch beam models. For both standard and mixed methods, existence and uniqueness results are proved, optimal rates of convergence are obtained and the superconvergence property is established. Reduced integration is shown to be an efficient method for arch beam problems and selected reduced integration is found to be identical to the mixed method. The significance of the analysis is threefold. The mixed method and the reduced integration methods converge uniformly at the optimal rate with respect to the arch thickness parameter, so they are locking free. Second, mixed method and reduced integration keep the superconvergence properties of the standard method. Finally, this is the first attempt to investigate the superconvergence of finite element methods for arch beam problems. We set up two types of superconvergence results: displacement at the nodal points and gradient at the Gauss points.This work was partially supported by the National Science Fundation grant CCR-88-20279  相似文献   

13.
Summary The finite volume element method (FVE) is a discretization technique for partial differential equations. It uses a volume integral formulation of the problem with a finite partitioning set of volumes to discretize the equations, then restricts the admissible functions to a finite element space to discretize the solution. this paper develops discretization error estimates for general selfadjoint elliptic boundary value problems with FVE based on triangulations with linear finite element spaces and a general type of control volume. We establishO(h) estimates of the error in a discreteH 1 semi-norm. Under an additional assumption of local uniformity of the triangulation the estimate is improved toO(h 2). Results on the effects of numerical integration are also included.This research was sponsored in part by the Air Force Office of Scientific Research under grant number AFOSR-86-0126 and the National Science Foundation under grant number DMS-8704169. This work was performed while the author was at the University of Colorado at Denver  相似文献   

14.
We consider the discretization in time of an inhomogeneous parabolic integro-differential equation, with a memory term of convolution type, in a Banach space setting. The method is based on representing the solution as an integral along a smooth curve in the complex plane which is evaluated to high accuracy by quadrature, using the approach in recent work of López-Fernández and Palencia. This reduces the problem to a finite set of elliptic equations with complex coefficients, which may be solved in parallel. The method is combined with finite element discretization in the spatial variables to yield a fully discrete method. The paper is a further development of earlier work by the authors, which on the one hand treated purely parabolic equations and, on the other, an evolution equation with a positive type memory term. The authors acknowledge the support of the Australian Research Council.  相似文献   

15.
Summary. Many linear boundary value problems arising in computational physics can be formulated in the calculus of differential forms. Discrete differential forms provide a natural and canonical approach to their discretization. However, much freedom remains concerning the choice of discrete Hodge operators, that is, discrete analogues of constitutive laws. A generic discrete Hodge operator is introduced and it turns out that most finite element and finite volume schemes emerge as its specializations. We reap the possibility of a unified convergence analysis in the framework of discrete exterior calculus. Received November 26, 1999 / Revised version received November 2, 2000 / Published online May 30, 2001  相似文献   

16.
We propose and analyze a numerical scheme for nonlinear degenerate parabolic convection–diffusion–reaction equations in two or three space dimensions. We discretize the diffusion term, which generally involves an inhomogeneous and anisotropic diffusion tensor, over an unstructured simplicial mesh of the space domain by means of the piecewise linear nonconforming (Crouzeix–Raviart) finite element method, or using the stiffness matrix of the hybridization of the lowest-order Raviart–Thomas mixed finite element method. The other terms are discretized by means of a cell-centered finite volume scheme on a dual mesh, where the dual volumes are constructed around the sides of the original mesh. Checking the local Péclet number, we set up the exact necessary amount of upstream weighting to avoid spurious oscillations in the convection-dominated case. This technique also ensures the validity of the discrete maximum principle under some conditions on the mesh and the diffusion tensor. We prove the convergence of the scheme, only supposing the shape regularity condition for the original mesh. We use a priori estimates and the Kolmogorov relative compactness theorem for this purpose. The proposed scheme is robust, only 5-point (7-point in space dimension three), locally conservative, efficient, and stable, which is confirmed by numerical experiments.This work was supported by the GdR MoMaS, CNRS-2439, ANDRA, BRGM, CEA, EdF, France.  相似文献   

17.
In this paper we present an analysis of a numerical method for a degenerate partial differential equation, called the Black–Scholes equation, governing American and European option pricing. The method is based on a fitted finite volume spatial discretization and an implicit time stepping technique. The analysis is performed within the framework of the vertical method of lines, where the spatial discretization is formulated as a Petrov–Galerkin finite element method with each basis function of the trial space being determined by a set of two-point boundary value problems. We establish the stability and an error bound for the solutions of the fully discretized system. Numerical results are presented to validate the theoretical results.  相似文献   

18.
This paper deals with the numerical simulation of the steady state two dimensional window Josephson junctions by finite element method. The model is represented by a sine-Gordon type composite PDE problem. Convergence and error analysis of the finite element approximation for this semilinear problem are presented. An efficient and reliable Newton-preconditioned conjugate gradient algorithm is proposed to solve the resulting nonlinear discrete system. Regular solution branches are computed using a simple continuation scheme. Numerical results associated with interesting physical phenomena are reported. Interface relaxation methods, which by taking advantage of special properties of the composite PDE, can further reduce the overall computational cost are proposed. The implementation and the associated numerical experiments of a particular interface relaxation scheme are also presented and discussed.  相似文献   

19.
The maximum norm error estimates of the Galerkin finite element approximations to the solutions of differential and integro-differential multi-dimensional parabolic problems are considered. Our method is based on the use of the discrete version of the elliptic-Sobolev inequality and some operator representations of the finite element solutions. The results of the present paper lead to the error estimates of optimal or almost optimal order for the case of simplicial Lagrangian piecewise polynomial elements.  相似文献   

20.
This paper discusses the extrapolation of numerical eigenvalues by finite elements for differential operators and obtains the following new results: (a) By extending a theorem of eigenvalue error estimate, which was established by Osborn, a new expansion of eigenvalue error is obtained. Many achievements, which are about the asymptotic expansions of finite element methods of differential operator eigenvalue problems, are brought into the framework of functional analysis. (b) The Richardson extrapolation of nonconforming finite elements for multiple eigenvalues and splitting extrapolation of finite elements based on domain decomposition of non-selfadjoint differential operators for multiple eigenvalues are achieved. In addition, numerical examples are provided to support the theoretical analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号