首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 125 毫秒
1.
均布载荷作用下夹层圆板的非线性振动   总被引:3,自引:2,他引:1  
给出了均布载荷作用下夹层圆板的大幅度振动方程,按假设的时间模态导出了该问题的非线性耦合的代数和微分特征方程组,并利用修正迭代法求出了该方程组的挖主解析解, 周边固定平振动的幅频-载荷特征关系,讨论了载荷对非线笥振动性 的态  相似文献   

2.
环形薄板的大幅度振动   总被引:3,自引:2,他引:1  
本文利用修正迭代法求出了环形薄板的轴对称大幅度自由振动的一种新的解析解,并由此导出了环板的振幅和振频的解析关系式.本文揭示了修正迭代法在板的大幅度振动问题研究中所潜在的很大的优越性.  相似文献   

3.
基于von Kármán薄板理论,讨论了滑动固定基础上周边面内压力作用下夹层圆板的非线性振动问题,应用变分法导出了该问题的非线性特征方程和边界条件,给出了其精确静态解,并使用修正迭代法求解了该方程,导出了夹层圆板振幅和非线性振频的解析关系式.当周边面力使夹层圆板的最低固有频率为零时,就可获得临界载荷的值.  相似文献   

4.
夹层圆板大幅度振动的进一步研究   总被引:1,自引:1,他引:0  
本文给出了具有滑动固定边界条件、并计及表板抗弯刚度的夹层圆板轴对称大幅度自由振动问题的解.在求解此问题时,使用了修正迭代法,并把本文结果与文[1]结果作了比较.  相似文献   

5.
夹层圆板的非线性弯曲   总被引:11,自引:4,他引:7  
本文导出了具有软夹心的夹层圆板的非线性轴对称弯曲理论的基本方程和边界条件,并给出了表板很薄情况下的这些方程和边界条件的简化形式.作为算例,研究了在均布横向载荷作用下具有滑动固定边界条件的夹层圆板,使用修正迭代法,得到了相当精确的解析解.  相似文献   

6.
本文研究了计及横向剪切变形的直线型正交异性层合圆板在简谐载荷q0cosωt作用下的非线性受迫振动问题·采用伽辽金方法得到强振频率与振幅关系的解析解·最后,分析了横向剪切对板振动的影响,并给出了板的非线性自由振动的非线性周期对线性周期的比值·  相似文献   

7.
基于von Karman薄板理论,建立了均布载荷和周边面内载荷联合作用下夹层圆板非线性振动问题的控制方程和滑动固定边界条件,给出了相应静力问题的精确解及其数值结果.基于时间模态假设和变分法,得到了空间模态的控制方程,并使用修正迭代法求解该方程,得到夹层圆板幅频-载荷特征关系.讨论了两种载荷对夹层圆板振动特性的影响规律.当周边面力使夹层圆板的最低固有频率为零时,就可获得临界载荷的值.  相似文献   

8.
基于经典板理论(CPT)、一阶剪切变形板理论(FPT)以及Reddy三阶剪切变形板理论(RPT)之间,圆板轴对称特征值问题在数学上的相似性,研究了不同理论之间圆板特征值间的解析关系.将特征值问题的求解转化为代数方程的求解,并导出了不同理论之间圆板特征值的显式精确解析关系.从而。只要已知圆板特征值(临界屈曲载荷和固有频率)的经典结果,便很容易从这些解析关系中得到一阶和三阶理论下圆板特征值的相应结果。这便于工程应用,同时也可检验一阶和三阶理论下板特征值的数值结果的有效性、收敛性以及精确性等问题.  相似文献   

9.
导出了轴对称圆板非线性热弹耦合自由振动基本方程,对周边固支圆支圆板运用伽辽金法求解,得出振幅随时间变化的数值解,将热弹耦合与非热弹耦合情况进行对比,发现振幅较小时,热弹耦合效应使板的固有频率相对于无热弹耦合情形提高;振幅较在时,热弹耦合疚使固有频率降低,最后比较了不同热弹耦合参数对应的振动情况。  相似文献   

10.
周边固支圆板非线性热弹耦合振动分析   总被引:6,自引:1,他引:5  
导出了轴对称圆板非线性热弹耦合自由振动基本方程 ,对周边固支圆板运用伽辽金法求解 ,得出振幅随时间变化的数值解· 将热弹耦合与非热弹耦合情况进行对比 ,发现振幅较小时 ,热弹耦合效应使板的固有频率相对于无热弹耦合情形提高 ;振幅较大时 ,热弹耦合效应使固有频率降低· 最后比较了不同热弹耦合参数对应的振动情况·  相似文献   

11.
In this paper, we obtain accurate analytic free vibration solutions of rectangular thin cantilever plates by using an up-to-date rational superposition method in the symplectic space. To the authors’ knowledge, these solutions were not available in the literature due to the difficulty in handling the complex mathematical model. The Hamiltonian system-based governing equation is first constructed. The eigenvalue problems of two fundamental vibration problems are formed for a cantilever plate. By symplectic expansion, the fundamental solutions are obtained. Superposition of these solutions are equal to that of the cantilever plate, which yields the analytic frequency equation. The mode shapes are then readily obtained. The developed method yields the benchmark analytic solutions with fast convergence and satisfactory accuracy by rigorous derivation, without assuming any trial solutions; thus, it is regarded as rational, and its applicability to more boundary value problems of partial differential equations represented by plates’ vibration, bending and buckling may be expected.  相似文献   

12.
This paper presents a nonlinear free vibration analysis of corrugated circular plates with shallow sinusoidal corrugations under uniformly static ambient temperature. Based on the nonlinear bending theory of thin shallow shells, the governing equations for corrugated plates are established from Hamilton’s principle. These partial differential equations are reduced to corresponding ordinary ones by elimination of the time variable with Kantorovich method following an assumed harmonic time mode. The resulting equations, which form a nonlinear two-point boundary value problem in spatial variable, are then solved numerically by shooting method, and the temperature-dependent characteristic relations of frequency vs. amplitude for nonlinear vibration of heated corrugated plates are obtained successfully. The comparison with available published results shows that the numerical analysis here is of good reliability. A detailed parametric study is conducted involving the dependency of nonlinear frequency on the depth and density of corrugations along with the temperature change. Effects of these variables on the trend of nonlinearity are plotted and discussed.  相似文献   

13.
It is of significance to explore benchmark analytic free vibration solutions of rectangular thick plates without two parallel simply supported edges, because the classic analytic methods are usually invalid for the problems of this category. The main challenge is to find the solutions meeting both the governing higher order partial differential equations (PDEs) and boundary conditions of the plates, i.e., to analytically solve associated complex boundary value problems of PDEs. In this letter, we extend a novel symplectic superposition method to the free vibration problems of clamped rectangular thick plates, with the analytic frequency solutions obtained by a brief set of equations. It is found that the analytic solutions of clamped plates can simply reduce to their variants with any combinations of clamped and simply supported edges via an easy relaxation of boundary conditions. The new results yielded in this letter are not only useful for rapid design of thick plate structures but also provide reliable benchmarks for checking the validity of other new solution methods.  相似文献   

14.
Integrating engineering structures with piezoelectric layers as actuator and/or sensor offers smart sandwich structures with controllable static and dynamic deflections. In this paper, a smart sandwich plate consisting of a light nanoclay-reinforced composite core and two piezoelectric face sheets is considered. The static and dynamic behaviors of the proposed smart plate are obtained using their governing coupled electro-mechanical system of equations. In order to facilitate the governing equations, a mesh-free method based on moving least square (MLS) shape function and first order shear deformation (FSDT) is developed and implemented. Two morphologies of intercalated stack and exfoliated nanoclay dispersions are considered in the distribution of the nanoclay into the polymeric matrix. The effects of morphology and volume fraction of the nanoclay, time-dependent loading, and essential boundary condition on the static and dynamic behavior of the smart piezoelectric-integrated nanocomposite plates are examined. In the dynamic analysis, resonance and amplitude modulation phenomena are studied. It is observed that the use of nanoclay, especially with exfoliated morphology, improves the static and the free vibration responses of the smart sandwich plates. Moreover, the frequency of the applied mechanical load has a significant effect on the electro-dynamic response of the proposed smart sandwich plates.  相似文献   

15.
More-accurate equations describing the axisymmetric deformations of elastic, thin-walled elements (coatings) are derived using the asymptotic analysis of the solution to the first fundamental problem of the theory of elasticity for a layer. The notable difference distinguishing these relations from the classical, Kirchhoff-Love and Reissner-Timoshenko equations of flexure of plates, and their modifications /1/, is, that there are no concentrated forces at the edges of the stamp when the corresponding contact problems are solved. Moreover, the formulas obtained contain the equations of classical theory as a special case. The solutions obtained using various applied theories are compared with the corresponding solution obtained using the equations of the theory of elasticity, using the example of the axisymmetric contact problem of impressing a plane circular stamp into a layer lying on a Fuss-Winkler foundation. The characteristic parameters of the problem in question are computed by numerical methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号