首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
Summary. In this paper we deal with the extension of the following functional equation¶¶ f (x) = M (f (m1(x, y)), ..., f (mk(x, y)))        (x, y ? K) f (x) = M \bigl(f (m_{1}(x, y)), \dots, f (m_{k}(x, y))\bigr) \qquad (x, y \in K) , (*)¶ where M is a k-variable operation on the image space Y, m1,..., mk are binary operations on X, K ì X K \subset X is closed under the operations m1,..., mk, and f : K ? Y f : K \rightarrow Y is considered as an unknown function.¶ The main result of this paper states that if the operations m1,..., mk, M satisfy certain commutativity relations and f satisfies (*) then there exists a unique extension of f to the (m1,..., mk)-affine hull K* of K, such that (*) holds over K*. (The set K* is defined as the smallest subset of X that contains K and is (m1,..., mk)-affine, i.e., if x ? X x \in X , and there exists y ? K* y \in K^* such that m1(x, y), ?, mk(x, y) ? K* m_{1}(x, y), \ldots, m_{k}(x, y) \in K^* then x ? K* x \in K^* ). As applications, extension theorems for functional equations on Abelian semigroups, convex sets, and symmetric convex sets are obtained.  相似文献   

2.
In this article we determine the irreducible ordinary characters cr \chi_r of a finite group G occurring in a transitive permutation representation (1M )G of a given subgroup M of G, and their multiplicities mr = ((1M)G, cr) 1 0 m_r = ((1_{M})^G, \chi_r) \neq 0 by means of a new explicit formula calculating the coefficients ark of the central idempotents er = ?k=1d ark Dk e_r = \sum\limits_{k=1}^{d} a_{rk} D_k in the intersection algebra B \cal B of (1M )G generated by the intersection matrices Dk corresponding to the double coset decomposition G = èk=1d Mxk M G = \bigcup\limits_{k=1}^{d} Mx_{k} M .¶Furthermore, an explicit formula is given for the calculation of the character values cr(x) \chi_{r}(x) of each element x ? G x \in G . Using this character formula we obtain a new practical algorithm for the calculation of a substantial part of the character table of G.  相似文献   

3.
A polynomial P(X) with coefficients {ǃ} of odd degree N - 1 is cyclotomic if and only if¶¶P(X) = ±Fp1X)Fp2Xp1) ?FprXp1 p2 ?pr-1) P(X) = \pm \Phi_{p1} (\pm X)\Phi_{p2}(\pm X^{p1}) \cdots \Phi_{p_r}(\pm X^{p1 p2 \cdots p_r-1}) ¶where N = p1 p2 · · · pr and the pi are primes, not necessarily distinct, and where Fp(X) : = (Xp - 1) / (X - 1) \Phi_{p}(X) := (X^{p} - 1) / (X - 1) is the p-th cyclotomic polynomial. This is a conjecture of Borwein and Choi [1]. We prove this conjecture for a class of polynomials of degree N - 1 = 2r pl - 1 N - 1 = 2^{r} p^{\ell} - 1 for any odd prime p and for integers r, l\geqq 1 r, \ell \geqq 1 .  相似文献   

4.
Let f=a0(x)+a1(x)y+a2(x)y2 ? \Bbb Z[x,y]f=a_0(x)+a_1(x)y+a_2(x)y^2\in {\Bbb Z}[x,y] be an absolutely irreducible polynomial of degree m in x. We show that the reduction f mod p will also be absolutely irreducible if p 3 cm·H(f)emp\ge c_m\cdot H(f)^{e_m} where H (f) is the height of f and e1 = 4,e2 = 6, e3 = 6 [2/3]{2}\over{3} and em = 2 m for m S 4. We also show that the exponents em are best possible for m 1 3m\ne 3 if a plausible number theoretic conjecture is true.  相似文献   

5.
There exist natural generalizations of the concept of formal groups laws for noncommutative power series. This is a note on formal quantum group laws and quantum group law chunks. Formal quantum group laws correspond to noncommutative (topological) Hopf algebra structures on free associative power series algebras ká áx1,...,xm ? ?k\langle\! \langle x_1,\dots,x_m \rangle\! \rangle , k a field. Some formal quantum group laws occur as completions of noncommutative Hopf algebras (quantum groups). By truncating formal power series, one gets quantum group law chunks. ¶If the characteristic of k is 0, the category of (classical) formal group laws of given dimension m is equivalent to the category of m-dimensional Lie algebras. Given a formal group law or quantum group law (chunk), the corresponding Lie structure constants are determined by the coefficients of its chunk of degree 2. Among other results, a classification of all quantum group law chunks of degree 3 is given. There are many more classes of strictly isomorphic chunks of degree 3 than in the classical case.  相似文献   

6.
Given a coloring of the edges of the complete graph K on n vertices in k colors, a p-colored subgraph of Kn is any subgraph whose edges only use colors from some p element set. We show for k̿ and k\2hphk that there is always a p-colored diameter two subgraph of Kn containing at least [((k+p)n)/(2k)]\displaystyle{(k+p)n \over 2k} vertices and that this is best possible up to an additive constant l satisfying 0hl<k\2.  相似文献   

7.
Let M n be a Riemannian n-manifold. Denote by S(p) and [`(Ric)](p)\overline {Ric}(p) the Ricci tensor and the maximum Ricci curvature on M n at a point p ? Mnp\in M^n, respectively. First we show that every isotropic submanifold of a complex space form [(M)\tilde]m(4 c)\widetilde M^m(4\,c) satisfies S £ ((n-1)c+ [(n2)/4] H2)gS\leq ((n-1)c+ {n^2 \over 4} H^2)g, where H2 and g are the squared mean curvature function and the metric tensor on M n, respectively. The equality case of the above inequality holds identically if and only if either M n is totally geodesic submanifold or n = 2 and M n is a totally umbilical submanifold. Then we prove that if a Lagrangian submanifold of a complex space form [(M)\tilde]m(4 c)\widetilde M^m(4\,c) satisfies [`(Ric)] = (n-1)c+ [(n2)/4] H2\overline {Ric}= (n-1)c+ {n^2 \over 4} H^2 identically, then it is a minimal submanifold. Finally, we describe the geometry of Lagrangian submanifolds which satisfy the equality under the condition that the dimension of the kernel of second fundamental form is constant.  相似文献   

8.
Let Ln denote the n-th homogeneous component of the free Lie ring L(W) on a given \Bbb ZC2{{\Bbb Z}}C_{2}-lattice W. This paper gives explicit formulae for the multiplicities of the three indecomposable \Bbb ZC2{{\Bbb Z}}C_{2}-lattices in a Krull-Schmidt decomposition of Ln. In the case where W is a free \Bbb ZC2{{\Bbb Z}}C_{2}-lattice, Ln is shown to have no non-zero direct summand on which C2 acts trivially - this extends a result of R. M. Bryant for the special case where W is the regular \Bbb ZC2{{\Bbb Z}}C_{2}-lattice. As an application, the structure of the higher dimensional modules associated to a non-cyclic free presentation of C2 is determined.  相似文献   

9.
The bipartite case of the Bollobás and Komlós conjecture states that for every j0, %>0 there is an !=!(j0, %) >0 such that the following statement holds: If G is any graph with minimum degree at least n$\displaystyle {n \over 2}+%n then G contains as subgraphs all n vertex bipartite graphs, H, satisfying¶H)hj0 \quad {\rm and} \quad b(H)h!n.$j (H)hj0 \quad {\rm and} \quad b(H)h!n.¶Here b(H), the bandwidth of H, is the smallest b such that the vertices of H can be ordered as v1, …, vn such that vi~Hvj implies |imj|hb.¶ This conjecture has been proved in [1]. Answering a question of E. Szemerédi [6] we show that this conjecture is tight in the sense that as %̂ then !̂. More precisely, we show that for any 0 such that that !(j0, %)Д %.  相似文献   

10.
We prove that for any $ \varepsilon > 0 $ \varepsilon > 0 there is k (e) k (\varepsilon) such that for any prime p and any integer c there exist k \leqq k(e) k \leqq k(\varepsilon) pairwise distinct integers xi with 1 \leqq xi \leqq pe, i = 1, ?, k 1 \leqq x_{i} \leqq p^{\varepsilon}, i = 1, \ldots, k , and such that¶¶?i=1k [1/(xi)] o c    (mod p). \sum\limits_{i=1}^k {{1}\over{x_i}} \equiv c\quad (\mathrm{mod}\, p). ¶¶ This gives a positive answer to a question of Erdös and Graham.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号