首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
《Discrete Mathematics》2022,345(7):112893
In this paper, we study the Reconstruction Conjecture for finite simple graphs. Let Γ and Γ be finite simple graphs with at least three vertices such that there exists a bijective map f:V(Γ)V(Γ) and for any vV(Γ), there exists an isomorphism ?v:Γ?vΓ?f(v). Then we define the associated directed graph Γ?=Γ?(Γ,Γ,f,{?v}vV(Γ)) with two kinds of arrows from the graphs Γ and Γ, the bijective map f and the isomorphisms {?v}vV(Γ). By investigating the associated directed graph Γ?, we study when are the two graphs Γ and Γ isomorphic.  相似文献   

3.
4.
Relatively recently it was proved that if Γ is an arbitrary set, then any equivalent norm on c0(Γ) can be approximated uniformly on bounded sets by polyhedral norms and C smooth norms, with arbitrary precision. We extend this result to more classes of spaces having uncountable symmetric bases, such as preduals of the ‘discrete’ Lorentz spaces d(w,1,Γ), and certain symmetric Nakano spaces and Orlicz spaces. We also show that, given an arbitrary ordinal number α, there exists a scattered compact space K having Cantor–Bendixson height at least α, such that every equivalent norm on C(K) can be approximated as above.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
《Discrete Mathematics》2022,345(8):112902
For a simple graph G, denote by n, Δ(G), and χ(G) its order, maximum degree, and chromatic index, respectively. A graph G is edge-chromatic critical if χ(G)=Δ(G)+1 and χ(H)<χ(G) for every proper subgraph H of G. Let G be an n-vertex connected regular class 1 graph, and let G? be obtained from G by splitting one vertex of G into two vertices. Hilton and Zhao in 1997 conjectured that G? must be edge-chromatic critical if Δ(G)>n/3, and they verified this when Δ(G)n2(7?1)0.82n. In this paper, we prove it for Δ(G)0.75n.  相似文献   

13.
14.
15.
A graph G is called a pseudo-core if every endomorphism of G is either an automorphism or a colouring. A graph G is a core if every endomorphism of G is an automorphism. Let Fq be the finite field with q elements where q is a power of an odd prime number. The quadratic forms graph, denoted by Quad(n,q) where n2, has all quadratic forms on Fqn as vertices and two vertices f and g are adjacent whenever rk(fg)=1 or 2. We prove that every Quad(n,q) is a pseudo-core. Further, when n is even, Quad(n,q) is a core. When n is odd, Quad(n,q) is not a core. On the other hand, we completely determine the independence number of Quad(n,q).  相似文献   

16.
In this paper, we study the antipode of a finite-dimensional Hopf algebra H with the dual Chevalley property and obtain an annihilation polynomial for the antipode. This generalizes an old result given by Taft and Wilson in 1974. As consequences, we show that 1) the quasi-exponent of H is the same as the exponent of its coradical, that is, qexp(H)=exp?(H0); 2) qexp(H?kS2)=qexp(H).  相似文献   

17.
《Discrete Mathematics》2022,345(8):112917
Let Φ(G,σ) and Φc(G,σ) denote the flow number and the circular flow number of a flow-admissible signed graph (G,σ), respectively. It is known that Φ(G)=?Φc(G)? for every unsigned graph G. Based on this fact, in 2011 Raspaud and Zhu conjectured that Φ(G,σ)?Φc(G,σ)<1 holds also for every flow-admissible signed graph (G,σ). This conjecture was disproved by Schubert and Steffen using graphs with bridges and vertices of large degree. In this paper we focus on cubic graphs, since they play a crucial role in many open problems in graph theory. For cubic graphs we show that Φ(G,σ)=3 if and only if Φc(G,σ)=3 and if Φ(G,σ){4,5}, then 4Φc(G,σ)Φ(G,σ). We also prove that all pairs of flow number and circular flow number that fulfil these conditions can be achieved in the family of bridgeless cubic graphs and thereby disprove the conjecture of Raspaud and Zhu even for bridgeless signed cubic graphs. Finally, we prove that all currently known flow-admissible graphs without nowhere-zero 5-flow have flow number and circular flow number 6 and propose several conjectures in this area.  相似文献   

18.
19.
Lawler, Schramm, and Werner gave in 2003 an explicit formula of the probability that SLE(8/3) does not intersect a deterministic hull. For general SLE(κ) with κ8/3, no such explicit formula has been obtained so far. In this paper, we shall consider a random hull generated by an independent chordal conformal restriction measure and obtain an explicit formula for the probability that SLE(κ) does not intersect this random hull for any κ(0,8). As a corollary, we will give a new proof of Werner's result on conformal restriction measures.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号