首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
In this paper, we investigate the problem for finding the set of solutions for equilibrium problems, the set of solutions of the variational inequalities for k-Lipschitz continuous mappings and fixed point problems for nonexpansive mappings in a Hilbert space. We introduce a new viscosity extragradient approximation method which is based on the so-called viscosity approximation method and extragradient method. We show that the sequence converges strongly to a common element of the above three sets under some parameters controlling conditions. Finally, we utilize our results to study some convergence problems for finding the zeros of maximal monotone operators. Our results are generalization and extension of the results of Kumam [P. Kumam, Strong convergence theorems by an extragradient method for solving variational inequalities and equilibrium problems in a Hilbert space, Turk. J. Math. 33 (2009) 85–98], Wangkeeree [R. Wangkeeree, An extragradient approximation method for equilibrium problems and fixed point problems of a countable family of nonexpansive mappings, Fixed Point Theory and Applications, 2008, Article ID 134148, 17 pages, doi:10.1155/2008/134148], Yao et al. [Y. Yao, Y.C. Liou, R. Chen, A general iterative method for an finite family of nonexpansive mappings, Nonlinear Analysis 69 (5–6) (2008) 1644–1654], Qin et al. [X. Qin, M. Shang, Y. Su, A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces, Nonlinear Analysis (69) (2008) 3897–3909], and many others.  相似文献   

2.
We study a cutting-plane method for semidefinite optimization problems, and supply a proof of the method’s convergence, under a boundedness assumption. By relating the method’s rate of convergence to an initial outer approximation’s diameter, we argue the method performs well when initialized with a second-order cone approximation, instead of a linear approximation. We invoke the method to provide bound gaps of 0.5–6.5% for sparse PCA problems with 1000s of covariates, and solve nuclear norm problems over 500 × 500 matrices.  相似文献   

3.
The goal of this paper is to discover some possibilities for applying the proximal point method to nonconvex problems. It can be proved that – for a wide class of problems – proximal regularization performed with appropriate regularization parameters ensures convexity of the auxiliary problems and each accumulation point of the method satisfies the necessary optimality conditions.  相似文献   

4.
We consider convex optimization and variational inequality problems with a given separable structure. We propose a new decomposition method for these problems which combines the recent logarithmic-quadratic proximal theory introduced by the authors with a decomposition method given by Chen-Teboulle for convex problems with particular structure. The resulting method allows to produce for the first time provably convergent decomposition schemes based on C Lagrangians for solving convex structured problems. Under the only assumption that the primal-dual problems have nonempty solution sets, global convergence of the primal-dual sequences produced by the algorithm is established. Received: October 6, 1999 / Accepted: February 2001?Published online September 17, 2001  相似文献   

5.
Huang  Na 《Numerical Algorithms》2020,85(4):1233-1254

In this work, we consider numerical methods for solving a class of block three-by-three saddle point problems, which arise from finite element methods for solving time-dependent Maxwell equations and a class of quadratic programs. We present a variant of Uzawa method with two variable parameters for the saddle point problems. These two parameters can be updated easily in each iteration, similar to the evaluation of the two iteration parameters in the conjugate gradient method. We show that the new iterative method converges to the unique solution of the saddle point problems under a reasonable condition. Numerical experiments highlighting the performance of the proposed method for problems are presented.

  相似文献   

6.
In this paper we develop a method for solving to optimality a general 0–1 formulation for uncapacitated location problems. This is a 3-stage method that solves large problems in reasonable computing times.The 3-stage method is composed of a primal-dual algorithm, a subgradient optimization to solve a Lagrangean dual and a branch-and-bound algorithm. It has a hierarchical structure, with a given stage being activated only if the optimal solution could not be identified in the preceding stage.The proposed method was used in the solution of three well-known uncapacitated location problems: the simple plant location problem, thep-median problem and the fixed-chargep-median problem. Computational results are given for problems of up to the size 200 customers ×200 potential facility sites.  相似文献   

7.
In applications such as signal processing and statistics, many problems involve finding sparse solutions to under-determined linear systems of equations. These problems can be formulated as a structured nonsmooth optimization problems, i.e., the problem of minimizing 1-regularized linear least squares problems. In this paper, we propose a block coordinate gradient descent method (abbreviated as CGD) to solve the more general 1-regularized convex minimization problems, i.e., the problem of minimizing an 1-regularized convex smooth function. We establish a Q-linear convergence rate for our method when the coordinate block is chosen by a Gauss-Southwell-type rule to ensure sufficient descent. We propose efficient implementations of the CGD method and report numerical results for solving large-scale 1-regularized linear least squares problems arising in compressed sensing and image deconvolution as well as large-scale 1-regularized logistic regression problems for feature selection in data classification. Comparison with several state-of-the-art algorithms specifically designed for solving large-scale 1-regularized linear least squares or logistic regression problems suggests that an efficiently implemented CGD method may outperform these algorithms despite the fact that the CGD method is not specifically designed just to solve these special classes of problems.  相似文献   

8.
We propose a new inexact column-and-constraint generation (i-C&CG) method to solve two-stage robust optimization problems. The method allows solutions to the master problems to be inexact, which is desirable when solving large-scale and/or challenging problems. It is equipped with a backtracking routine that controls the trade-off between bound improvement and inexactness. Importantly, this routine allows us to derive theoretical finite convergence guarantees for our i-C&CG method. Numerical experiments demonstrate computational advantages of our i-C&CG method over state-of-the-art column-and-constraint generation methods.  相似文献   

9.
Teng  Yue  Yang  Li  Song  Xiaoliang  Yu  Bo 《Numerical Algorithms》2020,83(3):833-866

In this paper, we propose an augmented Lagrangian proximal alternating (ALPA) method for solving two classes of large-scale sparse discrete constrained optimization problems. Specifically, the ALPA method generates a sequence of augmented Lagrangian (AL) subproblems in the out iterations and utilizes a proximal alternating linearized minimization method and sparse projection techniques to solve these AL subproblems. And we study the first-order optimality conditions for these two classes of problems. Under some suitable assumptions, we show that any accumulation point of the sequence generated by the ALPA method satisfies the necessary first-order optimality conditions of these problems or is a local minimizer of these problems. The computational results with practical problems demonstrate that our method can find the suboptimal solutions of the problems efficiently and is competitive with some other local solution methods.

  相似文献   

10.
In this work we are interested in the solution of nonlinear inverse problems of the form F(x)=yF(x)=y. We consider a two-stage method which is third order convergent for well-posed problems. Combining the method with Levenberg–Marquardt regularization of the linearized problems at each stage and using the discrepancy principle as a stopping criterion, we obtain a regularization method for ill-posed problems. Numerical experiments on some parameter identification and inverse acoustic scattering problems are presented to illustrate the performance of the method.  相似文献   

11.
We derive new a priori error estimates for linear parabolic equations with discontinuous coefficients. Due to low global regularity of the solutions the error analysis of the standard finite element method for parabolic problems is difficult to adopt for parabolic interface problems. A finite element procedure is, therefore, proposed and analyzed in this paper. We are able to show that the standard energy technique of finite element method for non-interface parabolic problems can be extended to parabolic interface problems if we allow interface triangles to be curved triangles. Optimal pointwise-in-time error estimates in the L 2(Ω) and H 1(Ω) norms are shown to hold for the semidiscrete scheme. A fully discrete scheme based on backward Euler method is analyzed and pointwise-in-time error estimates are derived. The interfaces are assumed to be arbitrary shape but smooth for our purpose.  相似文献   

12.
A numerical technique for solving time-dependent problems with variable coefficient governed by the heat, convection diffusion, wave, beam and telegraph equations is presented. The Sinc–Galerkin method is applied to construct the numerical solution. The method is tested on three problems and comparisons are made with the exact solutions. The numerical results demonstrate the reliability and efficiency of using the Sinc–Galerkin method to solve such problems.  相似文献   

13.
Constraint Programming typically uses the technique of depth-first branch and bound as the method of solving optimization problems. Although this method can give the optimal solution, for large problems, the time needed to find the optimal can be prohibitive. This paper introduces a method for using local search techniques within a Constraint Programming framework, and applies this technique to vehicle routing problems. We introduce a Constraint Programming model for vehicle routing, and a system for integrating Constraint Programming and local search techniques. We then describe how the method can be accelerated by handling core constraints using fast local checks, while other more complex constraints are left to the constraint propagation system. We have coupled our local search method with a meta-heuristic to avoid the search being trapped in local minima. Several meta-heuristics are investigated ranging from a simple Tabu Search method to Guided Local Search. An empirical study over benchmark problems shows the relative merits of these techniques. Investigations indicate that the specific long-term memory technique used by Guided Local Search can be used as a diversification method for Tabu Search, resulting in significant benefit. Several new best solutions on the Solomon problems are found in relatively few iterations of our algorithm.  相似文献   

14.
This paper is concerned with the implementation and testing of an algorithm for solving constrained least-squares problems. The algorithm is an adaptation to the least-squares case of sequential quadratic programming (SQP) trust-region methods for solving general constrained optimization problems. At each iteration, our local quadratic subproblem includes the use of the Gauss–Newton approximation but also encompasses a structured secant approximation along with tests of when to use this approximation. This method has been tested on a selection of standard problems. The results indicate that, for least-squares problems, the approach taken here is a viable alternative to standard general optimization methods such as the Byrd–Omojokun trust-region method and the Powell damped BFGS line search method.  相似文献   

15.
This paper presents a simple yet practically useful Gauss-Seidel iterative method for solving a class of nonlinear variational inequality problems over rectangles and of nonlinear complementarity problems. This scheme is a nonlinear generalization of a robust iterative method for linear complementarity problems developed by Mangasarian. Global convergence is presented for problems with Z-functions. It is noted that the suggested method can be viewed as a specific case of a class of linear approximation methods studied by Pang and others.  相似文献   

16.
Lotfi et al. [Solving a full fuzzy linear programming using lexicography method and fuzzy approximate solution, Appl. Math. Modell. 33 (2009) 3151–3156] pointed out that there is no method in literature for finding the fuzzy optimal solution of fully fuzzy linear programming (FFLP) problems and proposed a new method to find the fuzzy optimal solution of FFLP problems with equality constraints. In this paper, a new method is proposed to find the fuzzy optimal solution of same type of fuzzy linear programming problems. It is easy to apply the proposed method compare to the existing method for solving the FFLP problems with equality constraints occurring in real life situations. To illustrate the proposed method numerical examples are solved and the obtained results are discussed.  相似文献   

17.
A numerical technique for solving time-dependent problems with variable coefficient governed by the heat, convection diffusion, wave, beam and telegraph equations is presented. The Sinc–Galerkin method is applied to construct the numerical solution. The method is tested on three problems and comparisons are made with the exact solutions. The numerical results demonstrate the reliability and efficiency of using the Sinc–Galerkin method to solve such problems. Received: January 18, 2005  相似文献   

18.
We consider complementarity problems involving functions which are not Lipschitz continuous at the origin. Such problems arise from the numerical solution for differential equations with non-Lipschitzian continuity, e.g. reaction and diffusion problems. We propose a regularized projection method to find an approximate solution with an estimation of the error for the non-Lipschitzian complementarity problems. We prove that the projection method globally and linearly converges to a solution of a regularized problem with any regularization parameter. Moreover, we give error bounds for a computed solution of the non-Lipschitzian problem. Numerical examples are presented to demonstrate the efficiency of the method and error bounds.

  相似文献   


19.
We present a new global optimization approach for solving exactly or inexactly constrained distance geometry problems. Distance geometry problems are concerned with determining spatial structures from measurements of internal distances. They arise in the structural interpretation of nuclear magnetic resonance data and in the prediction of protein structure. These problems can be naturally formulated as global optimization problems which generally are large and difficult. The global optimization method that we present is related to our previous stochastic/perturbation global optimization methods for finding minimum energy configurations, but has several key differences that are important to its success. Our computational results show that the method readily solves a set of artificial problems introduced by Moré and Wu that have up to 343 atoms. On a set of considerably more difficult protein fragment problems introduced by Hendrickson, the method solves all the problems with up to 377 atoms exactly, and finds nearly exact solution for all the remaining problems which have up to 777 atoms. These preliminary results indicate that this approach has very good promise for helping to solve distance geometry problems.  相似文献   

20.
The paper presents a novel method for the computation of eigenvalues and solutions of Sturm–Liouville eigenvalue problems (SLEPs) using truncated Haar wavelet series. This is an extension of the technique proposed by Hsiao to solve discretized version of variational problems via Haar wavelets. The proposed method aims to cover a wider class of problems, by applying it to historically important and a very useful class of boundary value problems, thereby enhancing its applicability. To demonstrate the effectiveness and efficiency of the method various celebrated Sturm–Liouville problems are analyzed for their eigenvalues and solutions. Also, eigensystems are investigated for their asymptotic and oscillatory behavior. The proposed scheme, unlike the conventional numerical schemes, such as Rayleigh quotient and Rayleigh–Ritz approximation, gives eigenpairs simultaneously and provides upper and lower estimates of the smallest eigenvalue, and it is found to have quadratic convergence with increase in resolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号