首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
The problem of the decentralized robust control for a class of large-scale interconnected nonlinear dynamical systems with input interconnection and external interconnection perturbations is considered. Based on the stabilizability of each nominal isolated subsystem (i.e., the isolated subsystem in the absence of interconnection perturbations), a class of decentralized local state feedback controllers is proposed, and some sufficient conditions are derived by making use of the Lyapunov stability criterion such that uncertain large-scale interconnected systems can be stabilized asymptotically by these decentralized state feedback controllers. For large-scale systems with only input interconnection perturbations, such decentralized controllers become a class of decentralized stabilizing state feedback controllers. That is, the decentralized stability of such large-scale systems can be guaranteed always by using the decentralized state feedback controllers proposed in the paper. Finally, a numerical example is given to demonstrate the validity of the results.  相似文献   

2.
本文研究基于输出反馈的一类大型互联Holder连续非线性系统的全局实际镇定问题.通过构造每个子系统的状态观测器,并对观测器的状态作线性变换,得到分散输出反馈控制器.当输出反馈控制律作用于该系统时,闭环系统是全局实际稳定的.  相似文献   

3.
The problem of the decentralized robust tracking and model following is considered for a class of large-scale interconnected systems with uncertainties. A class of continuous (nonlinear) decentralized state feedback controllers is proposed. The proposed robust decentralized controllers can guarantee that the tracking errors between each subsystem and the local reference model decrease to zero asymptotically. Finally, an illustrative example is given to demonstrate the validity of the results.  相似文献   

4.
In this paper, we study the problem of designing decentralized reliable feedback control methods under a class of control failures for a class of linear interconnected continuous-time systems having internal subsystem time-delays and additional time-delay couplings. These failures are described by a model that takes into consideration possible outages or partial failures in every single actuator of each decentralized controller. The decentralized control design is performed through two steps. First, a decentralized stabilizing reliable feedback control set is derived at the subsystem level through the construction of appropriate Lyapunov-Krasovskii functional and, second, a feasible linear matrix inequalities procedure is then established for the effective construction of the control set under different feedback schemes. Two schemes are considered: the first is based on state measurement and the second utilizes static output feedback. The decentralized feedback gains in both schemes are determined by convex optimization over LMIs. We characterize decentralized linear matrix inequalities (LMIs)-based feasibility conditions such that every local closed-loop subsystem of the linear interconnected delay system is delay-dependent robustly asymptotically stable with a γ-level ℒ2-gain. The developed results are tested on a representative example.  相似文献   

5.
In this paper, a class of nonlinear large-scale interconnected systems with mismatched uncertainties is considered. Based on sliding mode control ideas, a kind of decentralized robust control scheme using only output information is presented to stabilize the system. The approach allows more general uncertain interconnections than all of the associated existing work and better robustness is achieved. Compared with existing decentralized output feedback schemes, it is unnecessary to solve Lyapunov equations and the so-called strict structural condition is avoided. Also, it is not necessary that the nominal subsystem is output feedback stabilizable. Finally, a simulation example is presented to illustrate the effectiveness of the results.  相似文献   

6.
The robust decentralized feedback stabilization problem of a class of nonlinear interconnected discrete-time systems is considered. This class of systems has uncertain nonlinear perturbations satisfying quadratic constraints that are functions of the overall state vector. Decentralized state and output feedback schemes are proposed and analyzed such that the overall closed-loop system guarantees global stability condition, derived in terms of local subsystem variables. Incorporating feedback gain perturbations, new resilient decentralized feedback schemes are subsequently developed. The proposed approach is formulated within the framework of convex optimization over LMIs. Simulation results illustrate the effectiveness of the proposed decentralized output-feedback controllers.  相似文献   

7.
In this paper, we study the problem of designing decentralized reliable feedback control methods under a class of control failures for a class of linear interconnected continuous-time systems having internal subsystem time-delays and additional time-delay couplings. These failures are described by a model that takes into consideration possible outages or partial failures in every single actuator of each decentralized controller. The decentralized control design is performed through two steps. First, a decentralized stabilizing reliable feedback control set is derived at the subsystem level through the construction of appropriate Lyapunov-Krasovskii functional and, second, a feasible linear matrix inequalities procedure is then established for the effective construction of the control set under different feedback schemes. Two schemes are considered: the first is based on state-measurement and the second utilizes static output-feedback. The decentralized feedback gains in both schemes are determined by convex optimization over linear matrix inequalities. We characterize decentralized linear matrix inequality-based feasibility conditions such that every local closed-loop subsystem of the linear interconnected delay system is delay-dependent robustly asymptotically stable with an γ-level ℒ2-gain. The developed results are tested on a representative example.  相似文献   

8.
The problem of decentralized robust tracking and model following is considered for a class of uncertain large-scale systems including delayed state perturbations in the interconnections. In this paper, it is assumed that the upper bounds of the delayed state perturbations, uncertainties, and external disturbances are unknown. A modified adaptation law with σ-modification is introduced to estimate such unknown bounds, and on the basis of the updated values of these unknown bounds, a class of decentralized local memoryless state feedback controllers is constructed for robust tracking of dynamical signals. The proposed decentralized adaptive robust tracking controllers can guarantee that the tracking errors between each time-delay subsystem and the corresponding local reference model without time-delay decrease uniformly asymptotically to zero. Finally, a numerical example is given to demonstrate the validity of the results.  相似文献   

9.
本文研究基于输出反馈的一类大型互联非线性不确定系统的分散H∞控制问题,通过构造每个子系统收敛的状态观测器,得到分散输出反馈控制器.当反馈控制律作用于该系统时,无扰动输入的闭环系统是全局渐近稳定的,而对允许的不确定性,干扰抑制的大小可以任意小,且控制器的设计也无需解任何的Hamilton-Jacobi方程或不等式.  相似文献   

10.
研究一类具有对称循环结构的连续和离散线性大系统的分散镇定特征,充分利用对称循环的特点,建立了判断这类系统可分散镇定的充分条件.在连续情形下,通过引进耦合结构模这一概念,揭示了这类系统分散镇定的重要特征,这就是当整个系统的耦合结构模给定之后,系统的分散镇定特性可以完全由各孤立子系统的结构所决定.这表明在这类系统的实际设计中,不管系统内中各子系统之间的耦合结构多么复杂,只要按一定的条件适当设计或修正各孤立子系统的结构参数,就能使所设计的大系统具有分散镇定特征,并提供了相应的分散镇定算法.对离散情形也进行了讨论,结果表明,连续系统与离散系统的分散镇定特征有着很大的差异.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号