首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
For a loopless multigraph G, the fractional arboricity Arb(G) is the maximum of over all subgraphs H with at least two vertices. Generalizing the Nash‐Williams Arboricity Theorem, the Nine Dragon Tree Conjecture asserts that if , then G decomposes into forests with one having maximum degree at most d. The conjecture was previously proved for ; we prove it for and when and . For , we can further restrict one forest to have at most two edges in each component. For general , we prove weaker conclusions. If , then implies that G decomposes into k forests plus a multigraph (not necessarily a forest) with maximum degree at most d. If , then implies that G decomposes into forests, one having maximum degree at most d. Our results generalize earlier results about decomposition of sparse planar graphs.  相似文献   

2.
Suppose and are arbitrary lists of positive integers. In this article, we determine necessary and sufficient conditions on M and N for the existence of a simple graph G, which admits a face 2‐colorable planar embedding in which the faces of one color have boundary lengths and the faces of the other color have boundary lengths . Such a graph is said to have a planar ‐biembedding. We also determine necessary and sufficient conditions on M and N for the existence of a simple graph G whose edge set can be partitioned into r cycles of lengths and also into t cycles of lengths . Such a graph is said to be ‐decomposable.  相似文献   

3.
In this article, we study so‐called rooted packings of rooted graphs. This concept is a mutual generalization of the concepts of a vertex packing and an edge packing of a graph. A rooted graph is a pair , where G is a graph and . Two rooted graphs and are isomorphic if there is an isomorphism of the graphs G and H such that S is the image of T in this isomorphism. A rooted graph is a rooted subgraph of a rooted graph if H is a subgraph of G and . By a rooted ‐packing into a rooted graph we mean a collection of rooted subgraphs of isomorphic to such that the sets of edges are pairwise disjoint and the sets are pairwise disjoint. In this article, we concentrate on studying maximum ‐packings when H is a star. We give a complete classification with respect to the computational complexity status of the problems of finding a maximum ‐packing of a rooted graph when H is a star. The most interesting polynomial case is the case when H is the 2‐edge star and S contains the center of the star only. We prove a min–max theorem for ‐packings in this case.  相似文献   

4.
In 1966, Gallai conjectured that for any simple, connected graph G having n vertices, there is a path‐decomposition of G having at most paths. In this article, we show that for any simple graph G having girth , there is a path‐decomposition of G having at most paths, where is the number of vertices of odd degree in G and is the number of nonisolated vertices of even degree in G.  相似文献   

5.
6.
A graph G is ‐colorable if can be partitioned into two sets and so that the maximum degree of is at most j and of is at most k. While the problem of verifying whether a graph is (0, 0)‐colorable is easy, the similar problem with in place of (0, 0) is NP‐complete for all nonnegative j and k with . Let denote the supremum of all x such that for some constant every graph G with girth g and for every is ‐colorable. It was proved recently that . In a companion paper, we find the exact value . In this article, we show that increasing g from 5 further on does not increase much. Our constructions show that for every g, . We also find exact values of for all g and all .  相似文献   

7.
The circular chromatic index of a graph G, written , is the minimum r permitting a function such that whenever e and are adjacent. It is known that for any , there is a 3‐regular simple graph G with . This article proves the following results: Assume is an odd integer. For any , there is an n‐regular simple graph G with . For any , there is an n‐regular multigraph G with .  相似文献   

8.
The kth power of a simple graph G, denoted by , is the graph with vertex set where two vertices are adjacent if they are within distance k in G. We are interested in finding lower bounds on the average degree of . Here we prove that if G is connected with minimum degree and , then G4 has average degree at least . We also prove that if G is a connected d‐regular graph on n vertices with diameter at least , then the average degree of is at least Both these results are shown to be essentially best possible; the second is best possible even when is arbitrarily large.  相似文献   

9.
For a graph G, let be the maximum number of vertices of G that can be colored whenever each vertex of G is given t permissible colors. Albertson, Grossman, and Haas conjectured that if G is s‐choosable and , then . In this article, we consider the online version of this conjecture. Let be the maximum number of vertices of G that can be colored online whenever each vertex of G is given t permissible colors online. An analog of the above conjecture is the following: if G is online s‐choosable and then . This article generalizes some results concerning partial list coloring to online partial list coloring. We prove that for any positive integers , . As a consequence, if s is a multiple of t, then . We also prove that if G is online s‐choosable and , then and for any , .  相似文献   

10.
11.
This article intends to study some functors from the category of graphs to itself such that, for any graph G, the circular chromatic number of is determined by that of G. In this regard, we investigate some coloring properties of graph powers. We show that provided that . As a consequence, we show that if , then . In particular, and has no subgraph with circular chromatic number equal to . This provides a negative answer to a question asked in (X. Zhu, Discrete Math, 229(1–3) (2001), 371–410). Moreover, we investigate the nth multichromatic number of subdivision graphs. Also, we present an upper bound for the fractional chromatic number of subdivision graphs. Precisely, we show that .  相似文献   

12.
Let G be a graph on n vertices, with maximal degree d, and not containing as an induced subgraph. We prove:
  • 1.
  • 2.
Here is the maximal eigenvalue of the Laplacian of G, is the independence complex of G, and denotes the topological connectivity of a complex plus 2. These results provide improved bounds for the existence of independent transversals in ‐free graphs.  相似文献   

13.
Let G be a connected simple graph, and let f be a mapping from to the set of integers. This paper is concerned with the existence of a spanning tree in which each vertex v has degree at least . We show that if for any nonempty subset , then a connected graph G has a spanning tree such that for all , where is the set of neighbors v of vertices in S with , , and is the degree of x in T. This is an improvement of several results, and the condition is best possible.  相似文献   

14.
15.
Let U5 be the tournament with vertices v1, …, v5 such that , and if , and . In this article, we describe the tournaments that do not have U5 as a subtournament. Specifically, we show that if a tournament G is “prime”—that is, if there is no subset , , such that for all , either for all or for all —then G is U5‐free if and only if either G is a specific tournament or can be partitioned into sets X, Y, Z such that , , and are transitive. From the prime U5‐free tournaments we can construct all the U5‐free tournaments. We use the theorem to show that every U5‐free tournament with n vertices has a transitive subtournament with at least vertices, and that this bound is tight.  相似文献   

16.
Let be nonnegative integers. A graph G is ‐colorable if its vertex set can be partitioned into sets such that the graph induced by has maximum degree at most d for , while the graph induced by is an edgeless graph for . In this article, we give two real‐valued functions and such that any graph with maximum average degree at most is ‐colorable, and there exist non‐‐colorable graphs with average degree at most . Both these functions converge (from below) to when d tends to infinity. This implies that allowing a color to be d‐improper (i.e., of type ) even for a large degree d increases the maximum average degree that guarantees the existence of a valid coloring only by 1. Using a color of type (even with a very large degree d) is somehow less powerful than using two colors of type (two stable sets).  相似文献   

17.
For each surface Σ, we define max G is a class two graph of maximum degree that can be embedded in . Hence, Vizing's Planar Graph Conjecture can be restated as if Σ is a sphere. In this article, by applying some newly obtained adjacency lemmas, we show that if Σ is a surface of characteristic . Until now, all known satisfy . This is the first case where .  相似文献   

18.
For a family of graphs, a graph G is ‐saturated if G contains no member of as a subgraph, but for any edge in , contains some member of as a subgraph. The minimum number of edges in an ‐saturated graph of order n is denoted . A subdivision of a graph H, or an H‐subdivision, is a graph G obtained from H by replacing the edges of H with internally disjoint paths of arbitrary length. We let denote the family of H‐subdivisions, including H itself. In this paper, we study when H is one of or , obtaining several exact results and bounds. In particular, we determine exactly for and show for n sufficiently large that there exists a constant such that . For we show that will suffice, and that this can be improved slightly depending on the value of . We also give an upper bound on for all t and show that . This provides an interesting contrast to a 1937 result of Wagner (Math Ann, 114 (1937), 570–590), who showed that edge‐maximal graphs without a K5‐minor have at least edges.  相似文献   

19.
We study theorems giving sufficient conditions on the vertex degrees of a graph G to guarantee G is t‐tough. We first give a best monotone theorem when , but then show that for any integer , a best monotone theorem for requires at least nonredundant conditions, where grows superpolynomially as . When , we give an additional, simple theorem for G to be t‐tough, in terms of its vertex degrees.  相似文献   

20.
For a multigraph G, the integer round‐up of the fractional chromatic index provides a good general lower bound for the chromatic index . For an upper bound, Kahn 1996 showed that for any real there exists a positive integer N so that whenever . We show that for any multigraph G with order n and at least one edge, ). This gives the following natural generalization of Kahn's result: for any positive reals , there exists a positive integer N so that + c whenever . We also compare the upper bound found here to other leading upper bounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号