首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
A graph G is ‐colorable if can be partitioned into two sets and so that the maximum degree of is at most j and of is at most k. While the problem of verifying whether a graph is (0, 0)‐colorable is easy, the similar problem with in place of (0, 0) is NP‐complete for all nonnegative j and k with . Let denote the supremum of all x such that for some constant every graph G with girth g and for every is ‐colorable. It was proved recently that . In a companion paper, we find the exact value . In this article, we show that increasing g from 5 further on does not increase much. Our constructions show that for every g, . We also find exact values of for all g and all .  相似文献   

2.
For a graph G, let be the maximum number of vertices of G that can be colored whenever each vertex of G is given t permissible colors. Albertson, Grossman, and Haas conjectured that if G is s‐choosable and , then . In this article, we consider the online version of this conjecture. Let be the maximum number of vertices of G that can be colored online whenever each vertex of G is given t permissible colors online. An analog of the above conjecture is the following: if G is online s‐choosable and then . This article generalizes some results concerning partial list coloring to online partial list coloring. We prove that for any positive integers , . As a consequence, if s is a multiple of t, then . We also prove that if G is online s‐choosable and , then and for any , .  相似文献   

3.
Consider a simple graph and its proper edge coloring c with the elements of the set . We say that c is neighbor set distinguishing (or adjacent strong) if for every edge , the set of colors incident with u is distinct from the set of colors incident with v. Let us then consider a stronger requirement and suppose we wish to distinguishing adjacent vertices by sums of their incident colors. In both problems the challenging conjectures presume that such colorings exist for any graph G containing no isolated edges if only . We prove that in both problems is sufficient. The proof is based on the Combinatorial Nullstellensatz, applied in the “sum environment.” In fact the identical bound also holds if we use any set of k real numbers instead of as edge colors, and the same is true in list versions of the both concepts. In particular, we therefore obtain that lists of length ( in fact) are sufficient for planar graphs.  相似文献   

4.
For graphs G and H, a homomorphism from G to H, or Hcoloring of G, is an adjacency preserving map from the vertex set of G to the vertex set of H. Our concern in this article is the maximum number of H‐colorings admitted by an n‐vertex, d‐regular graph, for each H. Specifically, writing for the number of H‐colorings admitted by G, we conjecture that for any simple finite graph H (perhaps with loops) and any simple finite n‐vertex, d‐regular, loopless graph G, we have where is the complete bipartite graph with d vertices in each partition class, and is the complete graph on vertices.Results of Zhao confirm this conjecture for some choices of H for which the maximum is achieved by . Here, we exhibit for the first time infinitely many nontrivial triples for which the conjecture is true and for which the maximum is achieved by .We also give sharp estimates for and in terms of some structural parameters of H. This allows us to characterize those H for which is eventually (for all sufficiently large d) larger than and those for which it is eventually smaller, and to show that this dichotomy covers all nontrivial H. Our estimates also allow us to obtain asymptotic evidence for the conjecture in the following form. For fixed H, for all d‐regular G, we have where as . More precise results are obtained in some special cases.  相似文献   

5.
We prove that if G is a graph and such that then can be partitioned into sets such that and contains no noncomplete ‐regular components for each . In particular, the vertex set of any graph G can be partitioned into sets, each of which induces a disjoint union of triangles and paths.  相似文献   

6.
A graph G is equitably k‐choosable if for every k‐list assignment L there exists an L‐coloring of G such that every color class has at most vertices. We prove results toward the conjecture that every graph with maximum degree at most r is equitably ‐choosable. In particular, we confirm the conjecture for and show that every graph with maximum degree at most r and at least r3 vertices is equitably ‐choosable. Our proofs yield polynomial algorithms for corresponding equitable list colorings.  相似文献   

7.
For graphs G and H, a homomorphism from G to H, or H‐coloring of G, is a map from the vertices of G to the vertices of H that preserves adjacency. When H is composed of an edge with one looped endvertex, an H‐coloring of G corresponds to an independent set in G. Galvin showed that, for sufficiently large n, the complete bipartite graph is the n‐vertex graph with minimum degree δ that has the largest number of independent sets. In this article, we begin the project of generalizing this result to arbitrary H. Writing for the number of H‐colorings of G, we show that for fixed H and or , for any n‐vertex G with minimum degree δ (for sufficiently large n). We also provide examples of H for which the maximum is achieved by and other H for which the maximum is achieved by . For (and sufficiently large n), we provide an infinite family of H for which for any n‐vertex G with minimum degree δ. The results generalize to weighted H‐colorings.  相似文献   

8.
The circular chromatic index of a graph G, written , is the minimum r permitting a function such that whenever e and are adjacent. It is known that for any , there is a 3‐regular simple graph G with . This article proves the following results: Assume is an odd integer. For any , there is an n‐regular simple graph G with . For any , there is an n‐regular multigraph G with .  相似文献   

9.
For graphs of bounded maximum average degree, we consider the problem of 2‐distance coloring, that is, the problem of coloring the vertices while ensuring that two vertices that are adjacent or have a common neighbor receive different colors. We prove that graphs with maximum average degree less than and maximum degree Δ at least 4 are 2‐distance ‐colorable, which is optimal and improves previous results from Dolama and Sopena, and from Borodin et al. We also prove that graphs with maximum average degree less than (resp. , ) and maximum degree Δ at least 5 (resp. 6, 8) are list 2‐distance ‐colorable, which improves previous results from Borodin et al., and from Ivanova. We prove that any graph with maximum average degree m less than and with large enough maximum degree Δ (depending only on m) can be list 2‐distance ‐colored. There exist graphs with arbitrarily large maximum degree and maximum average degree less than 3 that cannot be 2‐distance ‐colored: the question of what happens between and 3 remains open. We prove also that any graph with maximum average degree can be list 2‐distance ‐colored (C depending only on m). It is optimal as there exist graphs with arbitrarily large maximum degree and maximum average degree less than 4 that cannot be 2‐distance colored with less than colors. Most of the above results can be transposed to injective list coloring with one color less.  相似文献   

10.
Let denote the graph obtained from the complete graph by deleting the edges of some ‐subgraph. The author proved earlier that for each fixed s and , every graph with chromatic number has a minor. This confirmed a partial case of the corresponding conjecture by Woodall and Seymour. In this paper, we show that the statement holds already for much smaller t, namely, for .  相似文献   

11.
Consider the graph consisting of a triangle with a pendant edge. We describe the structure of rainbow ‐free edge colorings of a complete graph and provide some corresponding Gallai–Ramsey results. In particular, we extend a result of Gallai to find a partition of the vertices of a rainbow ‐free colored complete graph with a limited number of colors between the parts. We also extend some Gallai–Ramsey results of Chung and Graham, Faudree et al. and Gyárfás et al. Copyright © 2011 Wiley Periodicals, Inc. J Graph Theory  相似文献   

12.
This article intends to study some functors from the category of graphs to itself such that, for any graph G, the circular chromatic number of is determined by that of G. In this regard, we investigate some coloring properties of graph powers. We show that provided that . As a consequence, we show that if , then . In particular, and has no subgraph with circular chromatic number equal to . This provides a negative answer to a question asked in (X. Zhu, Discrete Math, 229(1–3) (2001), 371–410). Moreover, we investigate the nth multichromatic number of subdivision graphs. Also, we present an upper bound for the fractional chromatic number of subdivision graphs. Precisely, we show that .  相似文献   

13.
The star chromatic index of a graph G is the minimum number of colors needed to properly color the edges of the graph so that no path or cycle of length four is bi‐colored. We obtain a near‐linear upper bound in terms of the maximum degree . Our best lower bound on in terms of Δ is valid for complete graphs. We also consider the special case of cubic graphs, for which we show that the star chromatic index lies between 4 and 7 and characterize the graphs attaining the lower bound. The proofs involve a variety of notions from other branches of mathematics and may therefore be of certain independent interest.  相似文献   

14.
Let G be a simple undirected connected graph on n vertices with maximum degree Δ. Brooks' Theorem states that G has a proper Δ‐coloring unless G is a complete graph, or a cycle with an odd number of vertices. To recolor G is to obtain a new proper coloring by changing the color of one vertex. We show an analogue of Brooks' Theorem by proving that from any k‐coloring, , a Δ‐coloring of G can be obtained by a sequence of recolorings using only the original k colors unless
  • G is a complete graph or a cycle with an odd number of vertices, or
  • – , G is Δ‐regular and, for each vertex v in G, no two neighbors of v are colored alike.
We use this result to study the reconfiguration graph of the k‐colorings of G. The vertex set of is the set of all possible k‐colorings of G and two colorings are adjacent if they differ on exactly one vertex. We prove that for , consists of isolated vertices and at most one further component that has diameter . This result enables us to complete both a structural and an algorithmic characterization for reconfigurations of colorings of graphs of bounded maximum degree.  相似文献   

15.
For a multigraph G, the integer round‐up of the fractional chromatic index provides a good general lower bound for the chromatic index . For an upper bound, Kahn 1996 showed that for any real there exists a positive integer N so that whenever . We show that for any multigraph G with order n and at least one edge, ). This gives the following natural generalization of Kahn's result: for any positive reals , there exists a positive integer N so that + c whenever . We also compare the upper bound found here to other leading upper bounds.  相似文献   

16.
This article determines the set of the circular flow numbers of regular graphs. Let be the set of the circular flow numbers of graphs, and be the set of the circular flow numbers of d‐regular graphs. If d is even, then . For it is known 6 that . We show that . Hence, the interval is the only gap for circular flow numbers of ‐regular graphs between and 5. Furthermore, if Tutte's 5‐flow conjecture is false, then it follows, that gaps for circular flow numbers of graphs in the interval [5, 6] are due for all graphs not just for regular graphs.  相似文献   

17.
In the article, the existence of rainbow cycles in edge colored plane triangulations is studied. It is shown that the minimum number of colors that force the existence of a rainbow C3 in any n‐vertex plane triangulation is equal to . For a lower bound and for an upper bound of the number is determined.  相似文献   

18.
We seek the maximum number of colors in an edge‐coloring of the complete graph not having t edge‐disjoint rainbow spanning subgraphs of specified types. Let , , and denote the answers when the spanning subgraphs are cycles, matchings, or trees, respectively. We prove for and for . We prove for and for . We also provide constructions for the more general problem in which colorings are restricted so that colors do not appear on more than q edges at a vertex.  相似文献   

19.
Let D be a digraph with vertex set and arc set . A vertex x is a k‐king of D, if for every , there is an ‐path of length at most k. A subset N of is k‐independent if for every pair of vertices , we have and ; it is l‐absorbent if for every there exists such that . A ‐kernel of D is a k‐independent and l‐absorbent subset of . A k‐kernel is a ‐kernel. A digraph D is k‐quasitransitive, if for any path of length k, x0 and are adjacent. In this article, we will prove that a k‐quasitransitive digraph with has a k‐king if and only if it has a unique initial strong component and the unique initial strong component is not isomorphic to an extended ‐cycle where each has at least two vertices. Using this fact, we show that every strong k‐quasitransitive digraph has a ‐kernel.  相似文献   

20.
We construct a face two‐colourable, blue and green say, embedding of the complete graph in a nonorientable surface in which there are blue faces each of which have a hamilton cycle as their facial walk and green faces each of which have a triangle as their facial walk; equivalently a biembedding of a Steiner triple system of order n with a hamilton cycle decomposition of , for all and . Using a variant of this construction, we establish the minimum genus of nonorientable embeddings of the graph , for where and .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号