首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
A graph G is said to be semi-hyper-connected if the removal of every minimum cut of G creates exactly two connected components. In this paper, we characterize semi-hyper-connected vertex transitive graphs, in particular Cayley graphs.  相似文献   

2.
We investigate transitive decompositions of disconnected graphs, and show that these behave very differently from a related class of algebraic graph decompositions, known as homogeneous factorisations. We conclude that although the study of homogeneous factorisations admits a natural reduction to those cases where the graph is connected, the study of transitive decompositions does not.  相似文献   

3.
Let X be a vertex‐transitive graph, that is, the automorphism group Aut(X) of X is transitive on the vertex set of X. The graph X is said to be symmetric if Aut(X) is transitive on the arc set of X. suppose that Aut(X) has two orbits of the same length on the arc set of X. Then X is said to be half‐arc‐transitive or half‐edge‐transitive if Aut(X) has one or two orbits on the edge set of X, respectively. Stabilizers of symmetric and half‐arc‐transitive graphs have been investigated by many authors. For example, see Tutte [Canad J Math 11 (1959), 621–624] and Conder and Maru?i? [J Combin Theory Ser B 88 (2003), 67–76]. It is trivial to construct connected tetravalent symmetric graphs with arbitrarily large stabilizers, and by Maru?i? [Discrete Math 299 (2005), 180–193], connected tetravalent half‐arc‐transitive graphs can have arbitrarily large stabilizers. In this article, we show that connected tetravalent half‐edge‐transitive graphs can also have arbitrarily large stabilizers. A Cayley graph Cay(G, S) on a group G is said to be normal if the right regular representation R(G) of G is normal in Aut(Cay(G, S)). There are only a few known examples of connected tetravalent non‐normal Cayley graphs on non‐abelian simple groups. In this article, we give a sufficient condition for non‐normal Cayley graphs and by using the condition, infinitely many connected tetravalent non‐normal Cayley graphs are constructed. As an application, all connected tetravalent non‐normal Cayley graphs on the alternating group A6 are determined. © 2011 Wiley Periodicals, Inc. J Graph Theory  相似文献   

4.
A graph is vertex?transitive or symmetric if its automorphism group acts transitively on vertices or ordered adjacent pairs of vertices of the graph, respectively. Let G be a finite group and S a subset of G such that 1?S and S={s?1 | sS}. The Cayleygraph Cay(G, S) on G with respect to S is defined as the graph with vertex set G and edge set {{g, sg} | gG, sS}. Feng and Kwak [J Combin Theory B 97 (2007), 627–646; J Austral Math Soc 81 (2006), 153–164] classified all cubic symmetric graphs of order 4p or 2p2 and in this article we classify all cubic symmetric graphs of order 2pq, where p and q are distinct odd primes. Furthermore, a classification of all cubic vertex‐transitive non‐Cayley graphs of order 2pq, which were investigated extensively in the literature, is given. As a result, among others, a classification of cubic vertex‐transitive graphs of order 2pq can be deduced. © 2010 Wiley Periodicals, Inc. J Graph Theory 65: 285–302, 2010  相似文献   

5.
It is shown that every connected vertex and edge transitive graph has a normal multicover that is a connected normal edge transitive Cayley graph. Moreover, every chiral or regular map has a normal cover that is a balanced chiral or regular Cayley map, respectively. As an application, a new family of half-transitive graphs is constructed as 2-fold covers of a family of 2-arc transitive graphs admitting Suzuki groups.  相似文献   

6.
A graph is vertex‐transitive if its automorphism group acts transitively on vertices of the graph. A vertex‐transitive graph is a Cayley graph if its automorphism group contains a subgroup acting regularly on its vertices. In this article, the tetravalent vertex‐transitive non‐Cayley graphs of order 4p are classified for each prime p. As a result, there are one sporadic and five infinite families of such graphs, of which the sporadic one has order 20, and one infinite family exists for every prime p>3, two families exist if and only if p≡1 (mod 8) and the other two families exist if and only if p≡1 (mod 4). For each family there is a unique graph for a given order. © 2011 Wiley Periodicals, Inc.  相似文献   

7.
Let Γ be a graph and let G be a group of automorphisms of Γ. The graph Γ is called G-normal if G is normal in the automorphism group of Γ. Let T be a finite non-abelian simple group and let G=Tl with l1. In this paper we prove that if every connected pentavalent symmetric T-vertex-transitive graph is T-normal, then every connected pentavalent symmetric G-vertex-transitive graph is G-normal. This result, among others, implies that every connected pentavalent symmetric G-vertex-transitive graph is G-normal except T is one of 57 simple groups. Furthermore, every connected pentavalent symmetric G-regular graph is G-normal except T is one of 20 simple groups, and every connected pentavalent G-symmetric graph is G-normal except T is one of 17 simple groups.  相似文献   

8.
In 1983, the second author [D. Maru?i?, Ars Combinatoria 16B (1983), 297–302] asked for which positive integers n there exists a non‐Cayley vertex‐transitive graph on n vertices. (The term non‐Cayley numbers has later been given to such integers.) Motivated by this problem, Feng [Discrete Math 248 (2002), 265–269] asked to determine the smallest valency ?(n) among valencies of non‐Cayley vertex‐transitive graphs of order n. As cycles are clearly Cayley graphs, ?(n)?3 for any non‐Cayley number n. In this paper a goal is set to determine those non‐Cayley numbers n for which ?(n) = 3, and among the latter to determine those for which the generalized Petersen graphs are the only non‐Cayley vertex‐transitive graphs of order n. It is known that for a prime p every vertex‐transitive graph of order p, p2 or p3 is a Cayley graph, and that, with the exception of the Coxeter graph, every cubic non‐Cayley vertex‐transitive graph of order 2p, 4p or 2p2 is a generalized Petersen graph. In this paper the next natural step is taken by proving that every cubic non‐Cayley vertex‐transitive graph of order 4p2, p>7 a prime, is a generalized Petersen graph. In addition, cubic non‐Cayley vertex‐transitive graphs of order 2pk, where p>7 is a prime and k?p, are characterized. © 2011 Wiley Periodicals, Inc. J Graph Theory 69: 77–95, 2012  相似文献   

9.
For any d?5 and k?3 we construct a family of Cayley graphs of degree d, diameter k, and order at least k((d?3)/3)k. By comparison with other available results in this area we show that our family gives the largest currently known Cayley graphs for a wide range of sufficiently large degrees and diameters. © 2009 Wiley Periodicals, Inc. J Graph Theory 64: 87–98, 2010  相似文献   

10.
For an oriented graph G with n vertices, let f(G) denote the minimum number of transitive subtournaments that decompose G. We prove several results on f(G). In particular, if G is a tournament then and there are tournaments for which f(G)>n2/3000. For general G we prove that f(G)?⌊n2/3⌋ and this is tight. Some related parameters are also considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号