首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Application of the wavelet Galerkin method (WGM) to numerical solution of nonlinear buckling problems was studied with classical elastic thin rectangular plates. First, the discretized scheme of the von Kármán equation were introduced, then a simple calculation approach to the Jacobian and Hessian matrices based on the WGM was proposed, and the wavelet discretized scheme-based eigenvalue equation method, the extended equation method and the pseudo arc-length method for nonlinear buckling analysis were discussed. Second, the secondary post-buckling equilibrium paths of elastic thin rectangular plates and the effects of aspect ratios, boundary conditions and bi-directional compression on the mode jumping behaviors, were discussed in detail. Numerical results show that, the WGM possesses good convergence for solving buckling loads on rectangular plates, and the obtained equilibrium paths are in good agreement with those from the stability experiments, the 2-step perturbation method and the nonlinear finite element method. Given the feasibility of combination with different bifurcation computation methods, the WGM makes an efficient spatial discretization method for complex nonlinear stability problems of typical plates and shells. © 2023 Editorial Office of Applied Mathematics and Mechanics. All rights reserved.  相似文献   

2.
A solution to the linear Boltzmann equation satisfies an energy bound, which reflects a natural fact: The energy of particles in a finite volume is bounded in time by the energy of particles initially occupying the volume augmented by the energy transported into the volume by particles entering the volume over time. In this paper, we present boundary conditions (BCs) for the spherical harmonic $(P_N)$ approximation, which ensure that this fundamental energy bound is satisfied by the $P_N$ approximation. Our BCs are compatible with the characteristic waves of $P_N$ equations and determine the incoming waves uniquely. Both, energy bound and compatibility, are shown on abstract formulations of $P_N$ equations and BCs to isolate the necessary structures and properties. The BCs are derived from a Marshak type formulation of BC and base on a non-classical even/odd-classification of spherical harmonic functions and a stabilization step, which is similar to the truncation of the series expansion in the $P_N$ method. We show that summation by parts (SBP) finite difference on staggered grids in space and the method of simultaneous approximation terms (SAT) allows to maintain the energy bound also on the semi-discrete level.  相似文献   

3.
In the spectral Petrov‐Galerkin methods, the trial and test functions are required to satisfy particular boundary conditions. By a suitable linear combination of orthogonal polynomials, a basis, that is called the modal basis, is obtained. In this paper, we extend this idea to the nonorthogonal dual Bernstein polynomials. A compact general formula is derived for the modal basis functions based on dual Bernstein polynomials. Then, we present a Bernstein‐spectral Petrov‐Galerkin method for a class of time fractional partial differential equations with Caputo derivative. It is shown that the method leads to banded sparse linear systems for problems with constant coefficients. Some numerical examples are provided to show the efficiency and the spectral accuracy of the method.  相似文献   

4.
We show that orthonormal bases of functions with multiscale compact supports can be obtained from a generalization of principal component analysis. These functions, called multiscale principal components (MPCs), are eigenvectors of the correlation operator expressed in different vector subspaces. MPCs are data-adaptive functions that minimize their correlation with the reference signal. Using MPCs, we construct orthogonal bases which are similar to dyadic wavelet bases. We observe that MPCs are natural wavelets, i.e. their average is zero or nearly zero if the signal has a dominantly low-pass spectrum. We show that MPCs perform well in simple data compression experiments, in the presence or absence of singularities. We also introduce concentric MPCs, which are orthogonal basis functions having multiscale concentric supports. Use as kernels in convolution products with a signal, these functions allow to define a wavelet transform that has a striking capacity to emphasize atypical patterns.  相似文献   

5.
采用复变函数理论和边界配置方法,分析计算了Kirchhoff板的弯曲断裂问题.假设了位移及内力的复变函数式,它们能满足一系列的基本方程和支配条件,例如域内的平衡方程、裂纹表面的边界条件、裂纹尖端的应力奇异性质.这样,仅板边界的边界条件需要考虑.它们可用边界配置法和最小二乘法近似满足.对不同边界条件和载荷情形进行了分析计算.数值算例表明,本文方法精度较高,计算量小,是一种有效的半解析、半数值计算方法.  相似文献   

6.
This paper presents an approximate method for solving a class of fractional optimization problems with multiple dependent variables with multi-order fractional derivatives and a group of boundary conditions. The fractional derivatives are in the Caputo sense. In the presented method, first, the given optimization problem is transformed into an equivalent variational equality; then, by applying a special form of polynomial basis functions and approximations, the variational equality is reduced to a simple linear system of algebraic equations. It is demonstrated that the derived linear system has a unique solution. We get an approximate solution for the initial optimization problem by solving the final linear system of equations. The choice of polynomial basis functions provides a method with such flexibility that all initial and boundary conditions of the problem can be easily imposed. We extensively discuss the convergence of the method and, finally, present illustrative test examples to demonstrate the validity and applicability of the new technique.  相似文献   

7.
We present a new technique for generating error equi-distributing meshes that satisfy both local quasi-uniformity and a preset minimal mesh spacing. This is first done in the one-dimensional case by extending the Kautsky and Nichols method and then in the two-dimensional case by generalizing the tensor product methods to alternating curved line equi-distributions. With the new meshing approach, we have achieved better accuracy in approximation using interpolatory radial basis functions. Furthermore, improved accuracy in numerical results has been obtained when the interpolatory strategy is applied to the dual reciprocity boundary element method for solving a class of linear and nonhomogeneous partial differential equations.  相似文献   

8.
We develop an approximation scheme for a function defined on a bounded interval by combining techniques of boundary extension and Coiflet-type wavelet expansion. Such a modified wavelet approximation allows each expansion coefficient being explicitly expressed by a single-point sampling of the function, and allows boundary values and derivatives of the bounded function to be embedded in the modified wavelet basis. By incorporating this approximation scheme into the conventional Galerkin method, the interpolating property makes the solution of boundary value problems with strong nonlinearity to be very effective and accurate. As an example, we have applied the proposed method to the solution of the Bratu-type equations. Results demonstrate a much better accuracy than most methods developed so far. Interestingly, unlike most existing methods, numerical errors of the present solutions are not sensitive to the nonlinear intensity of the equations.  相似文献   

9.
Finite-dimensional approximations are developed for retarded delay differential equations (DDEs). The DDE system is equivalently posed as an initial-boundary value problem consisting of hyperbolic partial differential equations (PDEs). By exploiting the equivalence of partial derivatives in space and time, we develop a new PDE representation for the DDEs that is devoid of boundary conditions. The resulting boundary condition-free PDEs are discretized using the Galerkin method with Legendre polynomials as the basis functions, whereupon we obtain a system of ordinary differential equations (ODEs) that is a finite-dimensional approximation of the original DDE system. We present several numerical examples comparing the solution obtained using the approximate ODEs to the direct numerical simulation of the original non-linear DDEs. Stability charts developed using our method are compared to existing results for linear DDEs. The presented results clearly demonstrate that the equivalent boundary condition-free PDE formulation accurately captures the dynamic behaviour of the original DDE system and facilitates the application of control theory developed for systems governed by ODEs.  相似文献   

10.
A numerical boundary integral scheme is proposed for the solution of the system of field equations of plane, linear elasticity in stresses for homogeneous, isotropic media in the domain bounded by an ellipse under mixed boundary conditions. The stresses are prescribed on one half of the ellipse, while the displacements are given on the other half. The method relies on previous analytical work within the Boundary Integral Method [1], [2].The considered problem with mixed boundary conditions is replaced by two subproblems with homogeneous boundary conditions, one of each type, having a common solution. The equations are reduced to a system of boundary integral equations, which is then discretized in the usual way and the problem at this stage is reduced to the solution of a rectangular linear system of algebraic equations. The unknowns in this system of equations are the boundary values of four harmonic functions which define the full elastic solution inside the domain, and the unknown boundary values of stresses or displacements on proper parts of the boundary.On the basis of the obtained results, it is inferred that the tangential stress component on the fixed part of the boundary has a singularity at each of the two separation points, thought to be of logarithmic type. A tentative form for the singular solution is proposed to calculate the full solution in bulk directly from the given boundary conditions using the well-known Boundary Collocation Method. It is shown that this addition substantially decreases the error in satisfying the boundary conditions on some interval not containing the singular points.The obtained results are discussed and boundary curves for unknown functions are provided, as well as three-dimensional plots for quantities of practical interest. The efficiency of the used numerical schemes is discussed, in what concerns the number of boundary nodes needed to calculate the approximate solution.  相似文献   

11.
以边界位移函数方法为基础,推导了矩形层合板多种边界条件下的非齐次状态方程和定解条件.将非齐次状态方程增维齐次化,可避免积分时可能出现的数值病态问题,并简化了计算过程.边界位移沿厚度方向非线性分布假设可以适当减少数值结果收敛要求的薄层数.数值结果可作为其它数值法或半解析法的标准解.该文的方法可为分析更加复杂的边界条件问题提供参考.  相似文献   

12.
In this paper, we apply the boundary integral equation technique and the dual reciprocity boundary elements method (DRBEM) for the numerical solution of linear and nonlinear time‐fractional partial differential equations (TFPDEs). The main aim of the present paper is to examine the applicability and efficiency of DRBEM for solving TFPDEs. We employ the time‐stepping scheme to approximate the time derivative, and the method of linear radial basis functions is also used in the DRBEM technique. This method is improved by using a predictor–corrector scheme to overcome the nonlinearity that appears in the nonlinear problems under consideration. To confirm the accuracy of the new approach, several examples are presented. The convergence of the DRBEM is studied numerically by comparing the exact solutions of the problems under investigation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents a numerical method for solving a class of fractional variational problems (FVPs) with multiple dependent variables, multi order fractional derivatives and a group of boundary conditions. The fractional derivative in the problem is in the Caputo sense. In the presented method, the given optimization problem reduces to a system of algebraic equations using polynomial basis functions. An approximate solution for the FVP is achieved by solving the system. The choice of polynomial basis functions provides the method with such a flexibility that initial and boundary conditions can be easily imposed. We extensively discuss the convergence of the method and finally present illustrative examples to demonstrate validity and applicability of the new technique.  相似文献   

14.
By taking as a “prototype problem” a one-delay linear autonomous system of delay differential equations we present the problem of computing the characteristic roots of a retarded functional differential equation as an eigenvalue problem for a derivative operator with non-local boundary conditions given by the particular system considered. This theory can be enlarged to more general classes of functional equations such as neutral delay equations, age-structured population models and mixed-type functional differential equations.It is thus relevant to have a numerical technique to approximate the eigenvalues of derivative operators under non-local boundary conditions. In this paper we propose to discretize such operators by pseudospectral techniques and turn the original eigenvalue problem into a matrix eigenvalue problem. This approach is shown to be particularly efficient due to the well-known “spectral accuracy” convergence of pseudospectral methods. Numerical examples are given.  相似文献   

15.
In this paper, the problem of solving the one-dimensional parabolic partial differential equation subject to given initial and non-local boundary conditions is considered. The approximate solution is found using the radial basis functions collocation method. There are some difficulties in computing the solution of the time dependent partial differential equations using radial basis functions. If time and space are discretized using radial basis functions, the resulted coefficient matrix will be very ill-conditioned and so the corresponding linear system cannot be solved easily. As an alternative method for solution, we can use finite-difference methods for discretization of time and radial basis functions for discretization of space. Although this method is easy to use but an accurate solution cannot be provided. In this work an efficient collocation method is proposed for solving non-local parabolic partial differential equations using radial basis functions. Numerical results are presented and are compared with some existing methods.  相似文献   

16.
Min-protein oscillation in Escherichia coli has an essential role in controlling the accurate placement of the cell division septum at the middle-cell zone of the bacteria. This biochemical process has been successfully described by a set of reaction-diffusion equations at the macroscopic level. The lattice Boltzmann method (LBM) has been used to simulate Min-protein oscillation and proved to recover the correct macroscopic equations. In this present work, we studied the effects of LBM boundary conditions (BC) on Min-protein oscillation. The impact of diffusion and reaction dynamics on BCs was also investigated. It was found that the mirror-image BC is a suitable boundary treatment for this Min-protein model. The physical significance of the results is extensively discussed.  相似文献   

17.
The effect of an inclined homogeneous magnetic field on thermal convection between rigid plates heated from below under the influence of gravity is numerically simulated in a computational domain with periodic horizontal extent. The numerical technique is based on solenoidal (divergence‐free) basis functions satisfying the boundary conditions for both the velocity and the induced magnetic field. Thus, the divergence‐free conditions for both velocity and magnetic field are satisfied exactly. The expansion bases for the thermal field are also constructed to satisfy the boundary conditions. The governing partial differential equations are reduced to a system of ordinary differential equations under Galerkin projection and subsequently integrated in time numerically. The projection is performed by using a dual solenoidal bases set such that the pressure term is eliminated in the process. The quasi‐steady relationship between the velocity and the induced magnetic field corresponding to the liquid metals or melts is used to generate the solenoidal bases for the magnetic field from those for the velocity field. The technique is validated in the linear case for both oblique and vertical case by reproducing the marginal stability curves for varying Chandrasekhar number. Some numerical simulations are performed for either case in the nonlinear regime for Prandtl numbers Pr = 0.05 and Pr = 0.1. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, we derived the shifted Jacobi operational matrix (JOM) of fractional derivatives which is applied together with spectral tau method for numerical solution of general linear multi-term fractional differential equations (FDEs). A new approach implementing shifted Jacobi operational matrix in combination with the shifted Jacobi collocation technique is introduced for the numerical solution of nonlinear multi-term FDEs. The main characteristic behind this approach is that it reduces such problems to those of solving a system of algebraic equations which greatly simplifying the problem. The proposed methods are applied for solving linear and nonlinear multi-term FDEs subject to initial or boundary conditions, and the exact solutions are obtained for some tested problems. Special attention is given to the comparison of the numerical results obtained by the new algorithm with those found by other known methods.  相似文献   

19.
For quasilinear systems of hyperbolic equations, the nonclassical boundary value problem of controlling solutions with the help of boundary conditions is considered. Previously, this problem was extensively studied in the case of the simplest hyperbolic equations, namely, the scalar wave equation and certain linear systems. The corresponding problem formulations and numerical solution algorithms are extended to nonlinear (quasilinear and conservative) systems of hyperbolic equations. Some numerical (grid-characteristic) methods are considered that were previously used to solve the above problems. They include explicit and implicit conservative difference schemes on compact stencils that are linearizations of Godunov’s method. The numerical algorithms and methods are tested as applied to well-known linear examples.  相似文献   

20.
Galerkin and wavelet methods for optimal boundary control of a couple of discretely connected parallel beams are proposed. First, the problem with boundary controls is converted into a problem with distributed controls. The problem is, then, reduced by a Galerkin-based approach into determining the optimal control of a linear time-invariant lumped parameter system, which will be solved by a wavelet-based method using Legendre wavelets. The integration-operational matrix and Kronecker product are utilized to significantly simplify the optimization problem into a system of linear equations. A numerical example is presented to demonstrate the applicability and the efficiency of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号