首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
An operator \(S_{\varphi ,\psi }^{u}\in \mathcal {L}(L^2)\) is called the dilation of a truncated Toeplitz operator if for two symbols \(\varphi ,\psi \in L^{\infty }\) and an inner function u,
$$\begin{aligned} S_{\varphi ,\psi }^{u}f=\varphi P_uf+\psi Q_uf \end{aligned}$$
holds for \(f\in {L}^{2}\) where \(P_{u}\) denotes the orthogonal projection of \(L^2\) onto the model space \(\mathcal { K}_{u}^2=H^2{\ominus }{{u}H^2}\) and \(Q_u=I-P_u.\) In this paper, we study properties of the dilation of truncated Toeplitz operators on \(L^{2}\). In particular, we provide conditions for the dilation of truncated Toeplitz operators to be normal. As some applications, we give several examples of such operators.
  相似文献   

2.
An n-normal operator may be defined as an \(n \times n\) operator matrix with entries that are mutually commuting normal operators and an operator \(T \in \mathcal {B(H)}\) is quasi-nM-hyponormal (for \(n \in \mathbb {N}\)) if it is unitarily equivalent to an \(n \times n\) upper triangular operator matrix \((T_{ij})\) acting on \(\mathcal {K}^{(n)}\), where \(\mathcal {K}\) is a separable complex Hilbert space and the diagonal entries \(T_{jj}\) \((j = 1,2,\ldots , n)\) are M-hyponormal operators in \(\mathcal {B(K)}\). This is an extended notion of n-normal operators. We prove a necessary and sufficient condition for an \(n \times n\) triangular operator matrix to have Bishop’s property \((\beta )\). This leads us to study the hyperinvariant subspace problem for an \(n \times n\) triangular operator matrix.  相似文献   

3.
Let \(\varphi \) be an arbitrary linear-fractional self-map of the unit disk \({\mathbb {D}}\) and consider the composition operator \(C_{-1, \varphi }\) and the Toeplitz operator \(T_{-1,z}\) on the Hardy space \(H^2\) and the corresponding operators \(C_{\alpha , \varphi }\) and \(T_{\alpha , z}\) on the weighted Bergman spaces \(A^2_{\alpha }\) for \(\alpha >-1\). We prove that the unital C\(^*\)-algebra \(C^*(T_{\alpha , z}, C_{\alpha , \varphi })\) generated by \(T_{\alpha , z}\) and \(C_{\alpha , \varphi }\) is unitarily equivalent to \(C^*(T_{-1, z}, C_{-1, \varphi }),\) which extends a known result for automorphism-induced composition operators. For maps \(\varphi \) that are not automorphisms of \({\mathbb {D}}\), we show that \(C^*(C_{\alpha , \varphi }, {\mathcal {K}}_{\alpha })\) is unitarily equivalent to \(C^*(C_{-1, \varphi }, {\mathcal {K}}_{-1})\), where \({\mathcal {K}}_{\alpha }\) and \({\mathcal {K}}_{-1}\) denote the ideals of compact operators on \(A^2_{\alpha }\) and \(H^2\), respectively, and apply existing structure theorems for \(C^*(C_{-1, \varphi }, {\mathcal {K}}_{-1})/{\mathcal {K}}_{-1}\) to describe the structure of \(C^*(C_{\alpha , \varphi }, {\mathcal {K}}_{\alpha })/\mathcal {K_{\alpha }}\), up to isomorphism. We also establish a unitary equivalence between related weighted composition operators induced by maps \(\varphi \) that fix a point on the unit circle.  相似文献   

4.
For fixed real numbers \(c>0,\)\(\alpha >-\frac{1}{2},\) the finite Hankel transform operator, denoted by \(\mathcal {H}_c^{\alpha }\) is given by the integral operator defined on \(L^2(0,1)\) with kernel \(K_{\alpha }(x,y)= \sqrt{c xy} J_{\alpha }(cxy).\) To the operator \(\mathcal {H}_c^{\alpha },\) we associate a positive, self-adjoint compact integral operator \(\mathcal Q_c^{\alpha }=c\, \mathcal {H}_c^{\alpha }\, \mathcal {H}_c^{\alpha }.\) Note that the integral operators \(\mathcal {H}_c^{\alpha }\) and \(\mathcal Q_c^{\alpha }\) commute with a Sturm-Liouville differential operator \(\mathcal D_c^{\alpha }.\) In this paper, we first give some useful estimates and bounds of the eigenfunctions \(\varphi ^{(\alpha )}_{n,c}\) of \(\mathcal H_c^{\alpha }\) or \(\mathcal Q_c^{\alpha }.\) These estimates and bounds are obtained by using some special techniques from the theory of Sturm-Liouville operators, that we apply to the differential operator \(\mathcal D_c^{\alpha }.\) If \((\mu _{n,\alpha }(c))_n\) and \(\lambda _{n,\alpha }(c)=c\, |\mu _{n,\alpha }(c)|^2\) denote the infinite and countable sequence of the eigenvalues of the operators \(\mathcal {H}_c^{(\alpha )}\) and \(\mathcal Q_c^{\alpha },\) arranged in the decreasing order of their magnitude, then we show an unexpected result that for a given integer \(n\ge 0,\)\(\lambda _{n,\alpha }(c)\) is decreasing with respect to the parameter \(\alpha .\) As a consequence, we show that for \(\alpha \ge \frac{1}{2},\) the \(\lambda _{n,\alpha }(c)\) and the \(\mu _{n,\alpha }(c)\) have a super-exponential decay rate. Also, we give a lower decay rate of these eigenvalues. As it will be seen, the previous results are essential tools for the analysis of a spectral approximation scheme based on the eigenfunctions of the finite Hankel transform operator. Some numerical examples will be provided to illustrate the results of this work.  相似文献   

5.
Let \(\mathcal {R}\) be a prime ring, \(\mathcal {Z(R)}\) its center, \(\mathcal {C}\) its extended centroid, \(\mathcal {L}\) a Lie ideal of \(\mathcal {R}, \mathcal {F}\) a generalized skew derivation associated with a skew derivation d and automorphism \(\alpha \). Assume that there exist \(t\ge 1\) and \(m,n\ge 0\) fixed integers such that \( vu = u^m\mathcal {F}(uv)^tu^n\) for all \(u,v \in \mathcal {L}\). Then it is shown that either \(\mathcal {L}\) is central or \(\mathrm{char}(\mathcal {R})=2, \mathcal {R}\subseteq \mathcal {M}_2(\mathcal {C})\), the ring of \(2\times 2\) matrices over \(\mathcal {C}, \mathcal {L}\) is commutative and \(u^2\in \mathcal {Z(R)}\), for all \(u\in \mathcal {L}\). In particular, if \(\mathcal {L}=[\mathcal {R,R}]\), then \(\mathcal {R}\) is commutative.  相似文献   

6.
A bounded linear operator T acting on a Hilbert space is said to have orthogonality property \(\mathcal {O}\) if the subspaces \(\ker (T-\alpha )\) and \(\ker (T-\beta )\) are orthogonal for all \(\alpha , \beta \in \sigma _p(T)\) with \(\alpha \ne \beta \). In this paper, the authors investigate the compact perturbations of operators with orthogonality property \(\mathcal {O}\). We give a sufficient and necessary condition to determine when an operator T has the following property: for each \(\varepsilon >0\), there exists \(K\in \mathcal {K(H)}\) with \(\Vert K\Vert <\varepsilon \) such that \(T+K\) has orthogonality property \(\mathcal {O}\). Also, we study the stability of orthogonality property \(\mathcal {O}\) under small compact perturbations and analytic functional calculus.  相似文献   

7.
Let \({\mathcal B}_{p,w}\) be the Banach algebra of all bounded linear operators acting on the weighted Lebesgue space \(L^p(\mathbb {R},w)\), where \(p\in (1,\infty )\) and w is a Muckenhoupt weight. We study the Banach subalgebra \(\mathfrak {A}_{p,w}\) of \({\mathcal B}_{p,w}\) generated by all multiplication operators aI (\(a\in \mathrm{PSO}^\diamond \)) and all convolution operators \(W^0(b)\) (\(b\in \mathrm{PSO}_{p,w}^\diamond \)), where \(\mathrm{PSO}^\diamond \subset L^\infty (\mathbb {R})\) and \(\mathrm{PSO}_{p,w}^\diamond \subset M_{p,w}\) are algebras of piecewise slowly oscillating functions that admit piecewise slowly oscillating discontinuities at arbitrary points of \(\mathbb {R}\cup \{\infty \}\), and \(M_{p,w}\) is the Banach algebra of Fourier multipliers on \(L^p(\mathbb {R},w)\). For any Muckenhoupt weight w, we study the Fredholmness in the Banach algebra \({\mathcal Z}_{p,w}\subset \mathfrak {A}_{p,w}\) generated by the operators \(aW^0(b)\) with slowly oscillating data \(a\in \mathrm{SO}^\diamond \) and \(b\in \mathrm{SO}^\diamond _{p,w}\). Then, under some condition on the weight w, we complete constructing a Fredholm symbol calculus for the Banach algebra \(\mathfrak {A}_{p,w}\) in comparison with Karlovich and Loreto Hernández (Integr. Equations Oper. Theory 74:377–415, 2012) and Karlovich and Loreto Hernández (Integr. Equations Oper. Theory 75:49–86, 2013) and establish a Fredholm criterion for the operators \(A\in \mathfrak {A}_{p,w}\) in terms of their symbols. A new approach to determine local spectra is found.  相似文献   

8.
In this paper, influenced by the ideas from Mihail (Fixed Point Theory Appl 2015:15, 2015), we associate to every generalized iterated function system \(\mathcal {F}\) (of order m) an operator \(H_{\mathcal {F}}:\mathcal {C} ^{m}\rightarrow \mathcal {C}\), where \(\mathcal {C}\) stands for the space of continuous functions from the shift space on the metric space corresponding to the system. We provide sufficient conditions (on the constitutive functions of \(\mathcal {F}\)) for the operator \(H_{\mathcal {F}}\) to be continuous, contraction, \(\varphi \)-contraction, Meir–Keeler or contractive. We also give sufficient condition under which \(H_{\mathcal {F}}\) has a unique fixed point \(\pi _{0}\). Moreover, we prove that, under these circumstances, the closure of the imagine of \(\pi _{0}\) is the attractor of \(\mathcal {F}\) and that \(\pi _{0}\) is the canonical projection associated with \(\mathcal {F}\). In this way we give a partial answer to the open problem raised on the last paragraph of the above-mentioned Mihail’s paper.  相似文献   

9.
Let A be a 0-sectorial operator with a bounded \(H^\infty (\Sigma _\sigma )\)-calculus for some \(\sigma \in (0,\pi ),\) e.g. a Laplace type operator on \(L^p(\Omega ),\, 1< p < \infty ,\) where \(\Omega \) is a manifold or a graph. We show that A has a \(\mathcal {H}^\alpha _2(\mathbb {R}_+)\) Hörmander functional calculus if and only if certain operator families derived from the resolvent \((\lambda - A)^{-1},\) the semigroup \(e^{-zA},\) the wave operators \(e^{itA}\) or the imaginary powers \(A^{it}\) of A are R-bounded in an \(L^2\)-averaged sense. If X is an \(L^p(\Omega )\) space with \(1 \le p < \infty \), R-boundedness reduces to well-known estimates of square sums.  相似文献   

10.
Let \(\mathcal {U}=\{U(t,s)\}_{t\ge s\ge 0}\) be a strongly continuous and exponentially bounded evolution family acting on a complex Banach space X and let \(\mathcal {X}\) be a certain Banach function space of X-valued functions. We prove that the growth bound of the family \(\mathcal {U}\) is less than or equal to \(-\frac{1}{c(\mathcal {U}, \mathcal {X})}\) provided that the convolution operator \(f\mapsto \mathcal {U}*f\) acts on \(\mathcal {X}.\) It is well known that under the latter assumption, the convolution operator is bounded and then \(c(\mathcal {U}, \mathcal {X})\) denotes (ad-hoc) its norm in \(\mathcal {L}(\mathcal {X}).\) As a consequence, we prove that if \(\sup \nolimits _{s\ge 0}\int \nolimits _{s}^\infty \Vert U(t,s)\Vert dt=u_1(\mathcal {U})<\infty ,\) then \(\omega _0(\mathcal {U})u_1(\mathcal {U})\le -1.\) Finally, we give an example showing that the accuracy of the estimates may be quite accurate.  相似文献   

11.
Let k be an odd positive integer, L a lattice on a regular positive definite k-dimensional quadratic space over \(\mathbb {Q}\), \(N_L\) the level of L, and \(\mathscr {M}(L)\)  be the linear space of \(\theta \)-series attached to the distinct classes in the genus of L. We prove that, for an odd prime \(p|N_L\), if \(L_p=L_{p,1}\,\bot \, L_{p,2}\), where \(L_{p,1}\) is unimodular, \(L_{p,2}\) is (p)-modular, and \(\mathbb {Q}_pL_{p,2}\) is anisotropic, then \(\mathscr {M}(L;p):=\) \(\mathscr {M}(L)\) \(+T_{p^2}.\) \(\mathscr {M}(L)\)  is stable under the Hecke operator \(T_{p^2}\). If \(L_2\) is isometric to \(\left( \begin{array}{ll}0&{}\frac{1}{2}\\ \frac{1}{2}&{}0\end{array}\right) ^{\kappa }\,\bot \, \langle \varepsilon \rangle \) or \(\left( \begin{array}{ll}0&{}\frac{1}{2}\\ \frac{1}{2}&{}0\end{array}\right) ^{\kappa }\,\bot \, \langle 2\varepsilon \rangle \) or \(\left( \begin{array}{ll}0&{}1\\ 1&{}0\end{array}\right) ^{\kappa }\,\bot \, \langle \varepsilon \rangle \) with \(\varepsilon \in \mathbb {Z}_2^{\times }\) and \(\kappa :=\frac{k-1}{2}\), then \(\mathscr {M}(L;2):=T_{2^2}.\mathscr {M}(L)+T_{2^2}^2.\,\mathscr {M}(L)\) is stable under the Hecke operator \(T_{2^2}\). Furthermore, we determine some invariant subspaces of the cusp forms for the Hecke operators.  相似文献   

12.
We provide a streamlined construction of the Friedrichs extension of a densely-defined self-adjoint and semibounded operator A on a Hilbert space \(\mathcal {H}\), by means of a symmetric pair of operators. A symmetric pair is comprised of densely defined operators \(J: \mathcal {H}_1 \rightarrow \mathcal {H}_2\) and \(K: \mathcal {H}_2 \rightarrow \mathcal {H}_1\) which are compatible in a certain sense. With the appropriate definitions of \(\mathcal {H}_1\) and J in terms of A and \(\mathcal {H}\), we show that \((\textit{JJ}^\star )^{-1}\) is the Friedrichs extension of A. Furthermore, we use related ideas (including the notion of unbounded containment) to construct a generalization of the construction of the Krein extension of A as laid out in a previous paper of the authors. These results are applied to the study of the graph Laplacian on infinite networks, in relation to the Hilbert spaces \(\ell ^2(G)\) and \(\mathcal {H}_{\mathcal {E}}\) (the energy space).  相似文献   

13.
In the context of continuous logic, this paper axiomatizes both the class \(\mathcal {C}\) of lattice-ordered groups isomorphic to C(X) for X compact and the subclass \(\mathcal {C}^+\) of structures existentially closed in \(\mathcal {C}\); shows that the theory of \(\mathcal {C}^+\) is \(\aleph _0\)-categorical and admits elimination of quantifiers; establishes a Nullstellensatz for \(\mathcal {C}\) and \(\mathcal {C}^+\); shows that \(C(X)\in \mathcal {C}\) has a prime-model extension in \(\mathcal {C}^+\) just in case X is Boolean; and proves that in a sense relevant to continuous logic, positive formulas admit in \(\mathcal {C}^+\) elimination of quantifiers to positive formulas.  相似文献   

14.
Let \(\pi :{\mathbb {P}}({\mathcal {O}}(0)\oplus {\mathcal {O}}(k))\rightarrow {\mathbb {P}}^{n-1}\) be a projective bundle over \({\mathbb {P}}^{n-1}\) with \(1\le k \le n-1\). We denote \({\mathbb {P}}({\mathcal {O}}(0)\oplus {\mathcal {O}}(k))\) by \(N_{k}^{n}\) and endow it with the U(n)-invariant gradient shrinking Kähler Ricci soliton structure constructed by Cao (Elliptic and parabolic methods in geometry (Minneapolis, MN, 1994), A K Peters, Wellesley, 1996) and Koiso (Recent topics in differential and analytic geometry. Advanced studies in pure mathematics, Boston, 1990). In this paper, we show that lens space \(L(k\, ;1)(r)\) with radius r embedded in \(N_{k}^{n}\) is a self-similar solution. We also prove that there exists a pair of critical radii \(r_{1}<r_{2}\), which satisfies the following. The lens space \(L(k\, ;1)(r)\) is a self-shrinker if \(r<r_{2}\) and self-expander if \(r_{2}<r\), and the Ricci-mean curvature flow emanating from \(L(k\, ;1)(r)\) collapses to the 0-section of \(\pi \) if \(r<r_{1}\) and to the \(\infty \)-section of \(\pi \) if \(r_{1}<r\). This paper gives explicit examples of Ricci-mean curvature flows.  相似文献   

15.
Given a model \(\mathcal {M}\) of set theory, and a nontrivial automorphism j of \(\mathcal {M}\), let \(\mathcal {I}_{\mathrm {fix}}(j)\) be the submodel of \(\mathcal {M}\) whose universe consists of elements m of \(\mathcal {M}\) such that \(j(x)=x\) for every x in the transitive closure of m (where the transitive closure of m is computed within \(\mathcal {M}\)). Here we study the class \(\mathcal {C}\) of structures of the form \(\mathcal {I}_{\mathrm {fix}}(j)\), where the ambient model \(\mathcal {M}\) satisfies a frugal yet robust fragment of \(\mathrm {ZFC}\) known as \(\mathrm {MOST}\), and \(j(m)=m\) whenever m is a finite ordinal in the sense of \(\mathcal {M}.\) Our main achievement is the calculation of the theory of \(\mathcal {C}\) as precisely \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm {Collection}\). The following theorems encapsulate our principal results: Theorem A. Every structure in \(\mathcal {C}\) satisfies \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm { Collection}\). Theorem B. Each of the following three conditions is sufficient for a countable structure \(\mathcal {N}\) to be in \(\mathcal {C}\):(a) \(\mathcal {N}\) is a transitive model of \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm {Collection}\).(b) \(\mathcal {N}\) is a recursively saturated model of \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm {Collection}\).(c) \(\mathcal {N}\) is a model of \(\mathrm {ZFC}\). Theorem C. Suppose \(\mathcal {M}\) is a countable recursively saturated model of \(\mathrm {ZFC}\) and I is a proper initial segment of \(\mathrm {Ord}^{\mathcal {M}}\) that is closed under exponentiation and contains \(\omega ^\mathcal {M}\) . There is a group embedding \(j\longmapsto \check{j}\) from \(\mathrm {Aut}(\mathbb {Q})\) into \(\mathrm {Aut}(\mathcal {M})\) such that I is the longest initial segment of \(\mathrm {Ord}^{\mathcal {M}}\) that is pointwise fixed by \(\check{j}\) for every nontrivial \(j\in \mathrm {Aut}(\mathbb {Q}).\) In Theorem C, \(\mathrm {Aut}(X)\) is the group of automorphisms of the structure X, and \(\mathbb {Q}\) is the ordered set of rationals.  相似文献   

16.
In this paper, we study the equation \(\mathcal {L} u=0\) in \(\mathbb {R}^{N}\), where \(\mathcal {L}\) belongs to a general class of nonlocal linear operators which may be anisotropic and nonsymmetric. We classify distributional solutions of this equation, thereby extending and generalizing recent Liouville type theorems in the case where \(\mathcal {L}= (-{\Delta })^{s}\), s ∈ (0, 1) is the classical fractional Laplacian.  相似文献   

17.
In this paper we study perturbed Ornstein–Uhlenbeck operators
$$\begin{aligned} \left[ \mathcal {L}_{\infty } v\right] (x)=A\triangle v(x) + \left\langle Sx,\nabla v(x)\right\rangle -B v(x),\,x\in \mathbb {R}^d,\,d\geqslant 2, \end{aligned}$$
for simultaneously diagonalizable matrices \(A,B\in \mathbb {C}^{N,N}\). The unbounded drift term is defined by a skew-symmetric matrix \(S\in \mathbb {R}^{d,d}\). Differential operators of this form appear when investigating rotating waves in time-dependent reaction diffusion systems. We prove under certain conditions that the maximal domain \(\mathcal {D}(A_p)\) of the generator \(A_p\) belonging to the Ornstein–Uhlenbeck semigroup coincides with the domain of \(\mathcal {L}_{\infty }\) in \(L^p(\mathbb {R}^d,\mathbb {C}^N)\) given by
$$\begin{aligned} \mathcal {D}^p_{\mathrm {loc}}(\mathcal {L}_0)=\left\{ v\in W^{2,p}_{\mathrm {loc}}\cap L^p\mid A\triangle v + \left\langle S\cdot ,\nabla v\right\rangle \in L^p\right\} ,\,1<p<\infty . \end{aligned}$$
One key assumption is a new \(L^p\)-dissipativity condition
$$\begin{aligned} |z|^2\mathrm {Re}\,\left\langle w,Aw\right\rangle + (p-2)\mathrm {Re}\,\left\langle w,z\right\rangle \mathrm {Re}\,\left\langle z,Aw\right\rangle \geqslant \gamma _A |z|^2|w|^2\;\forall \,z,w\in \mathbb {C}^N \end{aligned}$$
for some \(\gamma _A>0\). The proof utilizes the following ingredients. First we show the closedness of \(\mathcal {L}_{\infty }\) in \(L^p\) and derive \(L^p\)-resolvent estimates for \(\mathcal {L}_{\infty }\). Then we prove that the Schwartz space is a core of \(A_p\) and apply an \(L^p\)-solvability result of the resolvent equation for \(A_p\). In addition, we derive \(W^{1,p}\)-resolvent estimates. Our results may be considered as extensions of earlier works by Metafune, Pallara and Vespri to the vector-valued complex case.
  相似文献   

18.
The Hilbert space \(\mathcal {D}_{2}\) is the space of all holomorphic functions f defined on the open unit disc \(\mathbb {D}\) such that \({f}^{'}\) is in the Hardy Hilbert space \(\mathbf {H}^2.\) In this paper, we prove that the invariant subspaces of \(\mathcal {D}_{2}\) with respect to multiplication operator \(M_{z}\) can be approximated with finite co-dimensional invariant subspaces. We also obtain a partial result in this direction for the classical Dirichlet space.  相似文献   

19.
The functional equation \(f^{m}+g^{m}=1\) can be regarded as the Fermat-type equations over function fields. In this paper, we investigate the entire and meromorphic solutions of the Fermat-type functional equations such as partial differential-difference equation \(\left( \frac{\partial f(z_{1}, z_{2})}{\partial z_{1}}\right) ^{n}+f^{m}(z_{1}+c_{1}, z_{2}+c_{2})=1\) in \(\mathbb {C}^{2}\) and partial difference equation \(f^{m}(z_{1}, \ldots , z_{n})+f^{m}(z_{1}+c_{1}, \ldots , z_{n}+c_{n})=1\) in \(\mathbb {C}^{n}\) by making use of Nevanlinna theory for meromorphic functions in several complex variables.  相似文献   

20.
The purpose of this article is to extend to \(\mathbb {R}^{n}\) known results in dimension 2 concerning the structure of a Hilbert space with reproducing kernel of the space of Herglotz wave functions. These functions are the solutions of Helmholtz equation in \(\mathbb {R} ^{n}\) that are the Fourier transform of measures supported in the unit sphere with density in \(L^{2}(\mathbb {S}^{n-1})\). As a natural extension of this, we define Banach spaces of solutions of the Helmholtz equation in \(\mathbb {R}^{n}\) belonging to weighted Sobolev type spaces \(\mathcal {H}^{p}\) having in a non local norm that involves radial derivatives and spherical gradients. We calculate the reproducing kernel of the Herglotz wave functions and study in \(\mathcal {H}^{p}\) and in mixed norm spaces, the continuity of the orthogonal projection \(\mathcal {P}\) of \(\mathcal {H}^{2}\) onto the Herglotz wave functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号