首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
For an open set Θ of k, let \s{Pθ: θ Θ\s} be a parametric family of probabilities modeling the distribution of i.i.d. random variables X1,…, Xn. Suppose Xi's are subject to right censoring and one is only able to observe the pairs (min(Xi, Yi), [Xi Yi]), i = 1,…, n, where [A] denotes the indicator function of the event A, Y1,…, Yn are independent of X1,…, Xn and i.i.d. with unknown distribution Q0. This paper investigates estimation of the value θ that gives a fitted member of the parametric family when the distributions of X1 and Y1 are subject to contamination. The constructed estimators are adaptive under the semi-parametric model and robust against small contaminations: they achieve a lower bound for the local asymptotic minimax risk over Hellinger neighborhoods, in the Hájel—Le Cam sense. The work relies on Beran (1981). The construction employs some results on product-limit estimators.  相似文献   

2.
Let S=(a1,...,am; b1,...,bn), where a1,...,am and b1,...,bn are two nonincreasing sequences of nonnegative integers. The pair S=(a1,...,am; b1,...,bn) is said to be a bigraphic pair if there is a simple bipartite graph G=(XY, E) such that a1,...,am and b1,...,bn are the degrees of the vertices in X and Y, respectively. Let Z3 be the cyclic group of order 3. Define σ(Z3, m, n) to be the minimum integer k such that every bigraphic pair S=(a1,...,am; b1,...,bn) with am, bn ≥ 2 and σ(S)=a1 +... + amk has a Z3-connected realization. For n=m, Yin[Discrete Math., 339, 2018-2026 (2016)] recently determined the values of σ(Z3, m, m) for m ≥ 4. In this paper, we completely determine the values of σ(Z3, m, n) for m n ≥ 4.  相似文献   

3.
For a 1-dependent stationary sequence {Xn} we first show that if u satisfies p1=p1(u)=P(X1>u)0.025 and n>3 is such that 88np131, then
P{max(X1,…,Xn)u}=ν·μn+O{p13(88n(1+124np13)+561)}, n>3,
where
ν=1−p2+2p3−3p4+p12+6p22−6p1p2,μ=(1+p1p2+p3p4+2p12+3p22−5p1p2)−1
with
pk=pk(u)=P{min(X1,…,Xk)>u}, k1
and
|O(x)||x|.
From this result we deduce, for a stationary T-dependent process with a.s. continuous path {Ys}, a similar, in terms of P{max0skTYs<u}, k=1,2 formula for P{max0stYsu}, t>3T and apply this formula to the process Ys=W(s+1)−W(s), s0, where {W(s)} is the Wiener process. We then obtain numerical estimations of the above probabilities.  相似文献   

4.
Consider the following Itô stochastic differential equation dX(t) = ƒ(θ0, X(t)) dt + dW(t), where (W(t), t 0), is a standard Wiener process in RN. On the basis of discrete data 0 = t0 < t1 < …<tn = T; X(t1),...,X(tn) we would like to estimate the parameter θ0. We shall define the least squares estimator and show that under some regularity conditions, is strongly consistent.  相似文献   

5.
Let X1, X2, …, Xn be i.i.d. d-dimensional random vectors with a continuous density. Let and . In this paper we find that the distribution of Zk (or Yk) can be used for characterizing multivariate normal distribution. This characterization can be employed for testing multivariate normality in terms of the so-called transformation method.  相似文献   

6.
Let G be a simple graph. The size of any largest matching in G is called the matching number of G and is denoted by ν(G). Define the deficiency of G, def(G), by the equation def(G)=|V(G)|−2ν(G). A set of points X in G is called an extreme set if def(GX)=def(G)+|X|. Let c0(G) denote the number of the odd components of G. A set of points X in G is called a barrier if c0(GX)=def(G)+|X|. In this paper, we obtain the following:

(1) Let G be a simple graph containing an independent set of size i, where i2. If X is extreme in G for every independent set X of size i in G, then there exists a perfect matching in G.

(2) Let G be a connected simple graph containing an independent set of size i, where i2. Then X is extreme in G for every independent set X of size i in G if and only if G=(U,W) is a bipartite graph with |U|=|W|i, and |Γ(Y)||U|−i+m+1 for any Y U, |Y|=m (1mi−1).

(3) Let G be a connected simple graph containing an independent set of size i, where i2. Then X is a barrier in G for every independent set X of size i in G if and only if G=(U,W) is a bipartite graph with |U|=|W|=i, and |Γ(Y)|m+1 for any Y U, |Y|=m (1mi−1).  相似文献   


7.
Maximal IM-unextendable graphs   总被引:3,自引:0,他引:3  
Qin Wang  Jinjiang Yuan   《Discrete Mathematics》2001,240(1-3):295-298
A graph G is maximal IM-unextendable if G is not induced matching extendable and, for every two nonadjacent vertices x and y, G+xy is induced matching extendable. We show in this paper that a graph G is maximal IM-unextendable if and only if G is isomorphic to Mr(Ks(Kn1Kn2Knt)), where Mr is an induced matching of size r, r1, t=s+2, and each ni is odd.  相似文献   

8.
Given two fixed graphs X and Y, the (X,Y)-intersection graph of a graph G is a graph where

1. each vertex corresponds to a distinct induced subgraph in G isomorphic to Y, and

2. two vertices are adjacent iff the intersection of their corresponding subgraphs contains an induced subgraph isomorphic to X.

This notion generalizes the classical concept of line graphs since the (K1,K2)-intersection graph of a graph G is precisely the line graph of G.

Let ( , respectively) denote the family of line graphs of bipartite graphs (bipartite multigraphs, respectively), and refer to a pair (X,Y) as a 2-pair if Y contains exactly two induced subgraphs isomorphic to X. Then and , respectively, are the smallest families amongst the families of (X,Y)-intersection graphs defined by so called hereditary 2-pairs and hereditary non-compact 2-pairs. Furthermore, they can be characterized through forbidden induced subgraphs. With this motivation, we investigate the properties of a 2-pair (X,Y) for which the family of (X,Y)-intersection graphs coincides with (or ). For this purpose, we introduce a notion of stability of a 2-pair and obtain the desired characterization for such stable 2-pairs. An interesting aspect of the characterization is that it is based on a graph determined by the structure of (X,Y).  相似文献   


9.
A random graph Gn(x) is constructed on independent random points U1,…,Un distributed uniformly on [0,1]d, d1, in which two distinct such points are joined by an edge if the l-distance between them is at most some prescribed value 0<x<1. The connectivity distance cn, the smallest x for which Gn(x) is connected, is shown to satisfy
(1)
For d2, the random graph Gn(x) behaves like a d-dimensional version of the random graphs of Erdös and Rényi, despite the fact that its edges are not independent: cn/dn→1, a.s., as n→∞, where dn is the largest nearest-neighbor link, the smallest x for which Gn(x) has no isolated vertices.  相似文献   

10.
A graph G with n vertices is said to be embeddable (in its complement) if there is an automorphism φ of Kn such that E(G) ∩ E(φ(G))=. It is known that all trees T with n (≥2) vertices and T K1,n−1 are embeddable. We say that G is 1-embeddable if, for every edge e, there is an automorphism φ of Kn such that E(G) ∩ E(φ(G))={e};and that it is 2-embeddable if,for every pair e1, e2 of edges, there is an automorphism φ of Kn such that E(G) ∩ E(φ(G))={e1, e2}. We prove here that all trees with n (3) vertices are 1-embeddable; and that all trees T with n (4) vertices and T K1,n−1 are 2-embeddable. In a certain sense, this result is sharp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号