首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This paper develops a DEA (data envelopment analysis) model to accommodate competition over outputs. In the proposed model, the total output of all decision making units (DMUs) is fixed, and DMUs compete with each other to maximize their self-rated DEA efficiency score. In the presence of competition over outputs, the best-practice frontier deviates from the classical DEA frontier. We also compute the efficiency scores using the proposed fixed sum output DEA (FSODEA) models, and discuss the competition strategy selection rule. The model is illustrated using a hypothetical data set under the constant returns to scale assumption and medal data from the 2000 Sydney Olympics under the variable returns to scale assumption.  相似文献   

2.
This paper develops a new radial super-efficiency data envelopment analysis (DEA) model, which allows input–output variables to take both negative and positive values. Compared with existing DEA models capable of dealing with negative data, the proposed model can rank the efficient DMUs and is feasible no matter whether the input–output data are non-negative or not. It successfully addresses the infeasibility issue of both the conventional radial super-efficiency DEA model and the Nerlove–Luenberger super-efficiency DEA model under the assumption of variable returns to scale. Moreover, it can project each DMU onto the super-efficiency frontier along a suitable direction and never leads to worse target inputs or outputs than the original ones for inefficient DMUs. Additional advantages of the proposed model include monotonicity, units invariance and output translation invariance. Two numerical examples demonstrate the practicality and superiority of the new model.  相似文献   

3.
In many managerial applications, situations frequently occur when a fixed cost is used in constructing the common platform of an organization, and needs to be shared by all related entities, or decision making units (DMUs). It is of vital importance to allocate such a cost across DMUs where there is competition for resources. Data envelopment analysis (DEA) has been successfully used in cost and resource allocation problems. Whether it is a cost or resource allocation issue, one needs to consider both the competitive and cooperative situation existing among DMUs in addition to maintaining or improving efficiency. The current paper uses the cross-efficiency concept in DEA to approach cost and resource allocation problems. Because DEA cross-efficiency uses the concept of peer appraisal, it is a very reasonable and appropriate mechanism for allocating a shared resource/cost. It is shown that our proposed iterative approach is always feasible, and ensures that all DMUs become efficient after the fixed cost is allocated as an additional input measure. The cross-efficiency DEA-based iterative method is further extended into a resource-allocation setting to achieve maximization in the aggregated output change by distributing available resources. Such allocations for fixed costs and resources are more acceptable to the players involved, because the allocation results are jointly determined by all DMUs rather than a specific one. The proposed approaches are demonstrated using an existing data set that has been applied in similar studies.  相似文献   

4.
This paper concerns the shared cost allocation problem by using Data Envelopment Analysis (DEA), which is observed in practical applications such as public services and production processes. In the management context, the cost allocation problem tries to balance the different desires of two management layers: central manager and each sector manager. The cost can be assigned in an equitable way to the various Decision Making Units (DMUs). To achieve this goal, we present a new DEA-based method for dividing a fixed cost among DMUs. In the proposed method, the fixed cost is assigned to DMUs such that the efficiency measures and the Returns to Scale classifications of all DMUs before and after assigning the fixed cost remain unchanged. Also, the gaps among the costs allocated to DMUs will be minimized. The proposed method has the flexibility to consider the management standpoints. Finally, numerical results of an elucidatory example are furnished to demonstrate the applicability and reliability of our scheme.  相似文献   

5.
In cost allocation problem, traditional DEA approaches allocate the fixed cost among a group of decision making units (DMUs), and treat the allocated cost as an extra input of each DMU. If costs except for the fixed cost are regarded as inputs in the cost allocation problem, then it is obvious that the fixed cost is a complement of other inputs rather than an extra independent input. Therefore it is necessary to combine the allocated cost with other cost measures in cost allocation problem. Based on this observation, this paper investigates the relationship between the allocated cost and the DEA efficiency score and develops a DEA-based approach to allocate the fixed cost among various DMUs. An example of allocating advertising expenditure between a car manufacturer and its dealers is presented to illustrate the method proposed in this paper.  相似文献   

6.
Zhu and Shen [European Journal of Operational Research 81 (1995) 590] show that alternative optimal solutions in the estimation of returns to scale (RTS) are caused by a particular linear dependency among a set of extreme efficient DMUs when one employs the concept of most productive scale size [European Journal of Operational Research 17 (1984) 35] in data envelopment analysis (DEA). This paper demonstrates that the presence of weakly efficient DMUs may also lead to alternative optima and extends the results of Zhu and Shen to the entire frontier. Necessary and sufficient conditions for the presence of multiple optimal solutions for constant returns to scale (CRS) DMUs are established.  相似文献   

7.
制造过程评价是改善制造系统效率的重要一环,传统的评价方法将每个制造系统决策单元视为黑箱来研究整体效率,忽略了中间产品转化信息及投入要素在各子过程中的配置信息。针对两阶段(第二阶段有外源性新投入)制造系统的效率评估问题,分别在固定规模报酬和可变规模报酬假设下,充分利用制造系统中间产品的转化及外源投入要素的配置信息,建立了制造系统网络DEA效率测度及分解模型,建模方法遵循客观评价原则,无需事先主观确定子效率和系统效率之间的组合关系。并将其应用于钢铁制造系统效率测度与分解,研究结果表明该方法能够挖掘决策单元内部子单元的效率情况,帮助决策者发现复杂制造过程非有效的根源,为复杂制造过程的整体效率测度及分解提供了有效的分析方法。  相似文献   

8.
In this paper, we consider a resource allocation (RA) problem and develop an approach based on cost (overall) efficiency. The aim is to allocate some inputs among decision making units (DMUs) in such way that their cost efficiencies improve or stay unchanged after RA. We formulate a multi-objective linear programming problem using two different strategies. First, we propose an RA model which keeps the cost efficiencies of units unchanged. This is done assuming fixed technical and allocative efficiencies. The approach is based on the assumption that the decision maker (DM) may not have big changes in the structure of DMUs within a short term. The second strategy does not impose any restrictions on technical and allocative efficiencies. It guarantees that none of the cost efficiencies of DMUs get worse after RA, and the improvement for units is possible if it is feasible and beneficial. Two numerical examples and an empirical illustration are also provided.  相似文献   

9.
Data envelopment analysis (DEA) model selection is problematic. The estimated efficiency for any DMU depends on the inputs and outputs included in the model. It also depends on the number of outputs plus inputs. It is clearly important to select parsimonious specifications and to avoid as far as possible models that assign full high-efficiency ratings to DMUs that operate in unusual ways (mavericks). A new method for model selection is proposed in this paper. Efficiencies are calculated for all possible DEA model specifications. The results are analysed using Principal Component Analysis. It is shown that model equivalence or dissimilarity can be easily assessed using this approach. The reasons why particular DMUs achieve a certain level of efficiency with a given model specification become clear. The methodology has the additional advantage of producing DMU rankings. These rankings can always be established independently of whether the model is estimated under constant or under variable returns to scale.  相似文献   

10.
《Optimization》2012,61(11):2455-2476
The frontier of the Production Possibility Set (PPS) consists of two types of full dimensional facets, efficient and weak facets. Identification of all facets of the PPS can be used in sensitivity and stability analysis, to find the closet target for inefficient Decision-Making Units (DMUs), and to determine the status of returns to scale of a DMU, among others. There has been a surge of articles on determining efficient facets in recent years. There are, however, many cases where knowledge of weak facets is required for a thorough analysis. This is the case, in particular, when the frontier of the PPS is constructed only of weak facets. The existing algorithms for finding weak facets either require knowledge of all extreme directions of the PPS or applicable only under some restrictions on the position of weak efficient DMUs. We provide a complete characterization of weak facets. Using this characterization, we then devise a different algorithm to find weak facets. We illustrate our algorithm using a numerical example.  相似文献   

11.
While traditional data envelopment analysis (DEA) models assess the relative efficiency of similar, independent decision making units (DMUs) centralized DEA models aim at reallocating inputs and outputs among the units setting new input and output targets for each one. This system point of view is appropriate when the DMUs belong to a common organization that allocates their inputs and appropriates their outputs. This intraorganizational perspective opens up the possibility that greater technical efficiency for the organization as a whole might be achieved by closing down some of the existing DMUs. In this paper, we present three centralized DEA models that take advantage of this possibility. Although these models involve some binary variables, we present efficient solution approaches based on Linear Programming. We also present some numerical results of the proposed models for a small problem from the literature.  相似文献   

12.
Competition is often presented in a free market. Efficiency evaluation of decision-making units (DMUs) needs accommodation of such competition among various units due to constrained resources. This paper develops an innovative quantitative approach to address the above-mentioned performance evaluation problem with constrained resource using output-oriented DEA. The proposed model allows DMUs to identify the maximum input reduction and resource savings to achieve performance improvement. Relations between the proposed model and classical output-oriented DEA models are explored and some economic insights are derived from these models. The proposed approach is validated by use of computational examples.  相似文献   

13.
Data envelopment analysis (DEA) is basically a linear programming based technique used for measuring the relative performance of organizational units, referred to as decision-making units (DMUs), where the presence of multiple inputs and outputs makes comparisons difficult. The ability of identifying frontier DMUs prior to the DEA calculation is of extreme importance to an effective and efficient DEA computation. In this paper, a method for identifying the efficient frontier is introduced. Then, the efficiency score and returns to scale (RTS) characteristic of DMUs will be produced by means of the equation of efficient frontier.  相似文献   

14.
It is well known that super-efficiency data envelopment analysis (DEA) approach can be infeasible under the condition of variable returns to scale (VRS). By extending of the work of Chen (2005), the current study develops a two-stage process for calculating super-efficiency scores regardless whether the standard VRS super-efficiency mode is feasible or not. The proposed approach examines whether the standard VRS super-efficiency DEA model is infeasible. When the model is feasible, our approach yields super-efficiency scores that are identical to those arising from the original model. For efficient DMUs that are infeasible under the super-efficiency model, our approach yields super-efficiency scores that characterize input savings and/or output surpluses. The current study also shows that infeasibility may imply that an efficient DMU does not exhibit super-efficiency in inputs or outputs. When infeasibility occurs, it can be necessary that (i) both inputs and outputs be decreased to reach the frontier formed by the remaining DMUs under the input-orientation and (ii) both inputs and outputs be increased to reach the frontier formed by the remaining DMUs under the output-orientation. The newly developed approach is illustrated with numerical examples.  相似文献   

15.
Super-efficiency data envelopment analysis (DEA) model is obtained when a decision making unit (DMU) under evaluation is excluded from the reference set. Because of the possible infeasibility of super-efficiency DEA model, the use of super-efficiency DEA model has been restricted to the situations where constant returns to scale (CRS) are assumed. It is shown that one of the input-oriented and output-oriented super-efficiency DEA models must be feasible for a any efficient DMU under evaluation if the variable returns to scale (VRS) frontier consists of increasing, constant, and decreasing returns to scale DMUs. We use both input- and output-oriented super-efficiency models to fully characterize the super-efficiency. When super-efficiency is used as an efficiency stability measure, infeasibility means the highest super-efficiency (stability). If super-efficiency is interpreted as input saving or output surplus achieved by a specific efficient DMU, infeasibility does not necessary mean the highest super-efficiency.  相似文献   

16.
A modified super-efficiency DEA model for infeasibility   总被引:1,自引:0,他引:1  
The super-efficiency data envelopment analysis (DEA) model is obtained when a decision making unit (DMU) under evaluation is excluded from the reference set. This model provides for a measure of stability of the “efficient” status for frontier DMUs. Under the assumption of variable returns to scale (VRS), the super efficiency model can be infeasible for some efficient DMUs, specifically those at the extremities of the frontier. The current study develops an approach to overcome infeasibility issues. It is shown that when the model is feasible, our approach yields super-efficiency scores that are equivalent to those arising from the original model. For efficient DMUs that are infeasible under the super-efficiency model, our approach yields optimal solutions and scores that characterize the extent of super-efficiency in both inputs and outputs. The newly developed approach is illustrated with two real world data sets.  相似文献   

17.
Applications of traditional data envelopments analysis (DEA) models require knowledge of crisp input and output data. However, the real-world problems often deal with imprecise or ambiguous data. In this paper, the problem of considering uncertainty in the equality constraints is analyzed and by using the equivalent form of CCR model, a suitable robust DEA model is derived in order to analyze the efficiency of decision-making units (DMUs) under the assumption of uncertainty in both input and output spaces. The new model based on the robust optimization approach is suggested. Using the proposed model, it is possible to evaluate the efficiency of the DMUs in the presence of uncertainty in a fewer steps compared to other models. In addition, using the new proposed robust DEA model and envelopment form of CCR model, two linear robust super-efficiency models for complete ranking of DMUs are proposed. Two different case studies of different contexts are taken as numerical examples in order to compare the proposed model with other approaches. The examples also illustrate various possible applications of new models.  相似文献   

18.
An issue of considerable importance involves the allocation of fixed costs or common revenue among a set of competing entities in an equitable way. Based on the data envelopment analysis (DEA) theory, this paper proposes new methods for (i) allocating fixed costs to decision making units (DMUs) and (ii) distributing common revenue among DMUs, in such a way that the relative efficiencies of all DMUs remain unchanged and the allocations should reflect the relative efficiencies and the input-output scales of individual DMUs. To illustrate our methods, numerical results for an example are described in this paper.  相似文献   

19.
Data envelopment analysis (DEA) is a powerful technique for performance evaluation of decision making units (DMUs). Ranking efficient DMUs based on a rational analysis is an issue that yet needs further research. The impact of each efficient DMU in evaluation of inefficient DMUs can be considered as additional information to discriminating among efficient DMUs. The concept of reference frontier share is introduced in which the share of each efficient DMU in construction of the reference frontier for evaluating inefficient DMUs is considered. For this purpose a model for measuring the reference frontier share of each efficient DMU associated with each inefficient one is proposed and then a total measure is provided based on which the ranking is made. The new approach has the capability for ranking extreme and non-extreme efficient DMUs. Further, it has no problem in dealing with negative data. These facts are verified by theorems, discussions and numerical examples.  相似文献   

20.
Reallocation of input resources (RIR) is a process by which certain decision making units (DMUs) reallocate resources among themselves; a process that occurs frequently in many enterprises. In this paper, a new data envelopment analysis (DEA) approach is developed to select the best cooperative partner DMU. Context-dependent DEA is used to identify the different levels of best-practice frontiers. Two DEA-based models are established for two cooperative scenarios, namely, resources pooling only and best-practice sharing. A cooperative method is applied to determine how to reallocate the input resources, and Shapley value is used to estimate the revenue changes that the various DMUs should expect after RIR. Two different situations with different objectives are considered. One objective is to maximize total revenue for the partnership, while the other is to maximize the Shapley value. The proposed approaches are illustrated with two examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号