首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
设$\mathcal {A,\ B}$ 是含单位元的Banach代数, $\mathcal M$ 是一个Banach $\mathcal {A,\ B}$-双模. $\mathcal {T}=\left ( \begin{array}{cc} \mathcal {A} & \mathcal M \\ & \mathcal {B} \\ \end{array} \right )$按照通常矩阵加法和乘法,范数定义为$\|\left( \begin{array}{cc} a & m \\ & b\\ \end{array} \right)\|=\|a\|_{\mathcal A}+\|m\|_{\mathcal M}+\|b\|_{\mathcal B}$,构成三角Banach 代数.如果从$\mathcal T$到其$n$次对偶空间$\mathcal T^{n}$上的Lie导子都是标准的,则称$\mathcal T$是Lie $n$弱顺从的.本文研究了三角Banach代数$\mathcal T$上的Lie $n$弱顺从性,证明了有限维套代数是Lie $n$弱顺从的.  相似文献   

2.
Let $\mathcal{A}$ and $\mathcal{B}$ be unital rings, and $\mathcal{M}$ be an $\left( {\mathcal{A},\mathcal{B}} \right)$ -bimodule, which is faithful as a left $\mathcal{A}$ -module and also as a right $\mathcal{B}$ -module. Let $\mathcal{U} = Tri\left( {\mathcal{A},\mathcal{M},\mathcal{B}} \right)$ be the triangular algebra. In this paper, we give some different characterizations of Lie higher derivations on $\mathcal{U}$ .  相似文献   

3.
To each irreducible infinite dimensional representation $(\pi ,\mathcal {H})$ of a C*‐algebra $\mathcal {A}$, we associate a collection of irreducible norm‐continuous unitary representations $\pi _{\lambda }^\mathcal {A}$ of its unitary group ${\rm U}(\mathcal {A})$, whose equivalence classes are parameterized by highest weights in the same way as the irreducible bounded unitary representations of the group ${\rm U}_\infty (\mathcal {H}) = {\rm U}(\mathcal {H}) \cap (\mathbf {1} + K(\mathcal {H}))$ are. These are precisely the representations arising in the decomposition of the tensor products $\mathcal {H}^{\otimes n} \otimes (\mathcal {H}^*)^{\otimes m}$ under ${\rm U}(\mathcal {A})$. We show that these representations can be realized by sections of holomorphic line bundles over homogeneous Kähler manifolds on which ${\rm U}(\mathcal {A})$ acts transitively and that the corresponding norm‐closed momentum sets $I_{\pi _\lambda ^\mathcal {A}}^{\bf n} \subseteq {\mathfrak u}(\mathcal {A})^{\prime }$ distinguish inequivalent representations of this type.  相似文献   

4.
We show that the different labelings of the crystal graph for irreducible highest weight -modules lead to different labelings of the simple modules for non semisimple Ariki–Koike algebras by using Lusztig a-values. Presented by Peter Littelman.  相似文献   

5.
We study the representation theory of the -algebra associated with a simple Lie algebra at level k. We show that the “-” reduction functor is exact and sends an irreducible module to zero or an irreducible module at any level k∈ℂ. Moreover, we show that the character of each irreducible highest weight representation of is completely determined by that of the corresponding irreducible highest weight representation of affine Lie algebra of . As a consequence we complete (for the “-” reduction) the proof of the conjecture of E. Frenkel, V. Kac and M. Wakimoto on the existence and the construction of the modular invariant representations of -algebras. Mathematics Subject Classification (1991)  17B68, 81R10  相似文献   

6.
The bcβγ-system $ \mathcal{W} $ of rank 3 has an action of the affine vertex algebra $ {V_0}\left( {\mathfrak{s}{{\mathfrak{l}}_2}} \right) $ , and the commutant vertex algebra $ \mathcal{C}=\mathrm{Com}\left( {{V_0}\left( {\mathfrak{s}{{\mathfrak{l}}_2}} \right),\mathcal{W}} \right) $ contains copies of V ?3/2 $ \left( {\mathfrak{s}{{\mathfrak{l}}_2}} \right) $ and Odake’s algebra $ \mathcal{O} $ . Odake’s algebra is an extension of the N = 2 super-conformal algebra with c = 9, and is generated by eight fields which close nonlinearly under operator product expansions. Our main result is that V ?3/2 $ \left( {\mathfrak{s}{{\mathfrak{l}}_2}} \right) $ and $ \mathcal{O} $ form a Howe pair (i.e., a pair of mutual commutants) inside $ \mathcal{C} $ . More generally, any finite-dimensional representation of a Lie algebra $ \mathfrak{g} $ gives rise to a similar Howe pair, and this example corresponds to the adjoint representation of $ \mathfrak{s}{{\mathfrak{l}}_2} $ .  相似文献   

7.
8.
The classical limit of the scaled elliptic algebra $\mathcal{A}$ ?,η ( $\widetilde{\mathfrak{s}\mathfrak{l}}_2$ ) is investigated. The limiting Lie algebra is described in two equivalent ways: as a central extension of the algebra of generalized automorphic sl2 valued functions on a strip and as an extended algebra of decreasing automorphic sl2 valued functions on the real line. A bialgebra structure and an infinite-dimensional representation in the Fock space are studied. The classical limit of elliptic algebra $\mathcal{A}$ q,p ( $\widetilde{\mathfrak{s}\mathfrak{l}}_2$ ) is also briefly presented.  相似文献   

9.
We study the category $\mathcal I _{\mathrm{gr }}$ of graded representations with finite-dimensional graded pieces for the current algebra $\mathfrak{g }\otimes \mathbf{C }[t]$ where $\mathfrak{g }$ is a simple Lie algebra. This category has many similarities with the category $\mathcal O $ of modules for $\mathfrak{g }$ , and in this paper, we prove an analog of the famous BGG duality in the case of $\mathfrak{sl }_{n+1}$ .  相似文献   

10.
Let $ {\mathcal{N}_{\mathfrak{g}*}} $ be the variety of nilpotent elements in the dual of the Lie algebra of a reductive algebraic group over an algebraically closed field. In [L4] Lusztig proposes a definition of a partition of $ {\mathcal{N}_{\mathfrak{g}*}} $ into smooth locally closed subvarieties (which are indexed by the unipotent classes in the corresponding group over complex numbers) and gives explicit results in types A, C and D. We discuss type B in this note.  相似文献   

11.
Analogs of the classical Sylvester theorem have been known for matrices with entries in noncommutative algebras including the quantized algebra of functions on GL N and the Yangian for $$ \mathfrak{g}\mathfrak{l}_{{N}} $$ . We prove a version of this theorem for the twisted Yangians $$ {\text{Y(}}\mathfrak{g}_{N} {\text{)}} $$associated with the orthogonal and symplectic Lie algebras $$ \mathfrak{g}_{N} = \mathfrak{o}_{N} {\text{ or }}\mathfrak{s}\mathfrak{p}_{N} $$. This gives rise to representations of the twisted Yangian $$ {\text{Y}}{\left( {\mathfrak{g}_{{N - M}} } \right)} $$ on the space of homomorphisms $$ {\text{Hom}}_{{\mathfrak{g}_{M} }} {\left( {W,V} \right)} $$, where W and V are finite-dimensional irreducible modules over $$ \mathfrak{g}_{{M}} {\text{ and }}\mathfrak{g}_{{N}} $$, respectively. In the symplectic case these representations turn out to be irreducible and we identify them by calculating the corresponding Drinfeld polynomials.We also apply the quantum Sylvester theorem to realize the twisted Yangian as a projective limit of certain centralizers in universal enveloping algebras.  相似文献   

12.
Analogs of the classical Sylvester theorem have been known for matrices with entries in noncommutative algebras including the quantized algebra of functions on GLN and the Yangian for $$ \mathfrak{g}\mathfrak{l}_{{N}} $$ . We prove a version of this theorem for the twisted Yangians $$ {\text{Y(}}\mathfrak{g}_{N} {\text{)}} $$associated with the orthogonal and symplectic Lie algebras $$ \mathfrak{g}_{N} = \mathfrak{o}_{N} {\text{ or }}\mathfrak{s}\mathfrak{p}_{N} $$. This gives rise to representations of the twisted Yangian $$ {\text{Y}}{\left( {\mathfrak{g}_{{N - M}} } \right)} $$ on the space of homomorphisms $$ {\text{Hom}}_{{\mathfrak{g}_{M} }} {\left( {W,V} \right)} $$, where W and V are finite-dimensional irreducible modules over $$ \mathfrak{g}_{{M}} {\text{ and }}\mathfrak{g}_{{N}} $$, respectively. In the symplectic case these representations turn out to be irreducible and we identify them by calculating the corresponding Drinfeld polynomials.We also apply the quantum Sylvester theorem to realize the twisted Yangian as a projective limit of certain centralizers in universal enveloping algebras.  相似文献   

13.
Let \(\mathfrak {g}\) be a simple complex Lie algebra and let \(\mathfrak {t} \subset \mathfrak {g}\) be a toral subalgebra of \(\mathfrak {g}\). As a \(\mathfrak {t}\)-module \(\mathfrak {g}\) decomposes as
$$\mathfrak{g} = \mathfrak{s} \oplus \left( \oplus_{\nu \in \mathcal{R}}~ \mathfrak{g}^{\nu}\right)$$
where \(\mathfrak {s} \subset \mathfrak {g}\) is the reductive part of a parabolic subalgebra of \(\mathfrak {g}\) and \(\mathcal {R}\) is the Kostant root system associated to \(\mathfrak {t}\). When \(\mathfrak {t}\) is a Cartan subalgebra of \(\mathfrak {g}\) the decomposition above is nothing but the root decomposition of \(\mathfrak {g}\) with respect to \(\mathfrak {t}\); in general the properties of \(\mathcal {R}\) resemble the properties of usual root systems. In this note we study the following problem: “Given a subset \(\mathcal {S} \subset \mathcal {R}\), is there a parabolic subalgebra \(\mathfrak {p}\) of \(\mathfrak {g}\) containing \(\mathcal {M} = \oplus _{\nu \in \mathcal {S}} \mathfrak {g}^{\nu }\) and whose reductive part equals \(\mathfrak {s}\)?”. Our main results is that, for a classical simple Lie algebra \(\mathfrak {g}\) and a saturated \(\mathcal {S} \subset \mathcal {R}\), the condition \((\text {Sym}^{\cdot }(\mathcal {M}))^{\mathfrak {s}} = \mathbb {C}\) is necessary and sufficient for the existence of such a \(\mathfrak {p}\). In contrast, we show that this statement is no longer true for the exceptional Lie algebras F4,E6,E7, and E8. Finally, we discuss the problem in the case when \(\mathcal {S}\) is not saturated.
  相似文献   

14.
Let R be a commutative Noetherian ring, \({\mathfrak {a}}\) an ideal of R, M a finitely generated R-module, and \({\mathcal {S}}\) a Serre subcategory of the category of R-modules. We introduce the concept of \({\mathcal {S}}\)-minimax R-modules and the notion of the \({\mathcal {S}}\)-finiteness dimension
$$\begin{aligned} f_{\mathfrak {a}}^{{\mathcal {S}}}(M):=\inf \lbrace f_{\mathfrak {a}R_{\mathfrak {p}}}(M_{\mathfrak {p}}) \vert \mathfrak {p}\in {\text {Supp}}_R(M/ \mathfrak {a}M) \text { and } R/\mathfrak {p}\notin {\mathcal {S}} \rbrace \end{aligned}$$
and we will prove that: (i) If \({\text {H}}_{\mathfrak {a}}^{0}(M), \cdots ,{\text {H}}_{\mathfrak {a}}^{n-1}(M)\) are \({\mathcal {S}}\)-minimax, then the set \(\lbrace \mathfrak {p}\in {\text {Ass}}_R( {\text {H}}_{\mathfrak {a}}^{n}(M)) \vert R/\mathfrak {p}\notin {\mathcal {S}}\rbrace \) is finite. This generalizes the main results of Brodmann–Lashgari (Proc Am Math Soc 128(10):2851–2853, 2000), Quy (Proc Am Math Soc 138:1965–1968, 2010), Bahmanpour–Naghipour (Proc Math Soc 136:2359–2363, 2008), Asadollahi–Naghipour (Commun Algebra 43:953–958, 2015), and Mehrvarz et al. (Commun Algebra 43:4860–4872, 2015). (ii) If \({\mathcal {S}}\) satisfies the condition \(C_{\mathfrak {a}}\), then
$$\begin{aligned} f_{\mathfrak {a}}^{{\mathcal {S}}}(M)= \inf \lbrace i\in {\mathbb {N}}_{0} \vert {\text {H}}_{\mathfrak {a}}^{i}(M) \text { is not } {\mathcal {S}}\hbox {-}minimax\rbrace . \end{aligned}$$
This is a formulation of Faltings’ Local-global principle for the \({\mathcal {S}}\)-minimax local cohomology modules. (iii) \( \sup \lbrace i\in {\mathbb {N}}_{0} \vert {\text {H}}_{\mathfrak {a}}^{i}(M) \text { is not } {\mathcal {S}}\text {-minimax} \rbrace = \sup \lbrace i\in {\mathbb {N}}_{0} \vert {\text {H}}_{\mathfrak {a}}^{i}(M) \text { is not in } {\mathcal {S}} \rbrace \).
  相似文献   

15.
We show the existence of a unital subalgebra of the symmetric group algebra linearly spanned by sums of permutations with a common peak set, which we call the peak algebra. We show that is the image of the descent algebra of type B under the map to the descent algebra of type A which forgets the signs, and also the image of the descent algebra of type D. The algebra contains a two-sided ideal which is defined in terms of interior peaks. This object was introduced in previous work by Nyman (2003); we find that it is the image of certain ideals of the descent algebras of types B and D. We derive an exact sequence of the form . We obtain this and many other properties of the peak algebra and its peak ideal by first establishing analogous results for signed permutations and then forgetting the signs. In particular, we construct two new commutative semisimple subalgebras of the descent algebra (of dimensions and by grouping permutations according to their number of peaks or interior peaks. We discuss the Hopf algebraic structures that exist on the direct sums of the spaces and over and explain the connection with previous work of Stembridge (1997); we also obtain new properties of his descents-to-peaks map and construct a type B analog.

  相似文献   


16.
Let M and N be nonzero subspaces of a Hilbert space H, and PM and PN denote the orthogonal projections on M and N, respectively. In this note, an exact representation of the angle and the minimum gap of M and N is obtained. In addition, we study relations between the angle, the minimum gap of two subspaces M and N, and the reduced minimum modulus of (I - PN)PM,  相似文献   

17.
Let ${\mathcal{B}_{p,w}}$ be the Banach algebra of all bounded linear operators acting on the weighted Lebesgue space ${L^p(\mathbb{R},w)}$ , where ${p\in(1,\infty)}$ and w is a Muckenhoupt weight. We study the Banach subalgebra ${\mathfrak{U}_{p,w}}$ of ${\mathcal{B}_{p,w}}$ generated by all multiplication operators aI ( ${a\in PSO^\diamond}$ ) and all convolution operators W 0(b) ( ${b\in PSO_{p,w}^\diamond}$ ), where ${PSO^\diamond\subset L^\infty(\mathbb{R})}$ and ${PSO_{p,w}^\diamond\subset M_{p,w}}$ are algebras of piecewise slowly oscillating functions that admit piecewise slowly oscillating discontinuities at arbitrary points of ${\mathbb{R}\cup\{\infty\}}$ , and M p,w is the Banach algebra of Fourier multipliers on ${L^p(\mathbb{R},w)}$ . Under some conditions on the Muckenhoupt weight w, using results of the local study of ${\mathfrak{U}_{p,w}}$ obtained in the first part of the paper and applying the theory of Mellin pseudodifferential operators and the two idempotents theorem, we now construct a Fredholm symbol calculus for the Banach algebra ${\mathfrak{U}_{p,w}}$ and establish a Fredholm criterion for the operators ${A\in\mathfrak{U}_{p,w}}$ in terms of their Fredholm symbols. In four partial cases we obtain for ${\mathfrak{U}_{p,w}}$ more effective results.  相似文献   

18.
This paper is a continuation of the series of papers “Quantization of Lie bialgebras (QLB) I-V”. We show that the image of a Kac-Moody Lie bialgebra with the standard quasitriangular structure under the quantization functor defined in QLB-I,II is isomorphic to the Drinfeld-Jimbo quantization of this Lie bialgebra, with the standard quasitriangular structure. This implies that when the quantization parameter is formal, then the category O for the quantized Kac-Moody algebra is equivalent, as a braided tensor category, to the category O over the corresponding classical Kac-Moody algebra, with the tensor category structure defined by a Drinfeld associator. This equivalence is a generalization of the functor constructed previously by G. Lusztig and the second author. In particular, we answer positively a question of Drinfeld whether the characters of irreducible highest weight modules for quantized Kac-Moody algebras are the same as in the classical case. Moreover, our results are valid for the Lie algebra $\mathfrak{g}(A)$ corresponding to any symmetrizable matrix A (not necessarily with integer entries), which answers another question of Drinfeld. We also prove the Drinfeld-Kohno theorem for the algebra $\mathfrak{g}(A)$ (it was previously proved by Varchenko using integral formulas for solutions of the KZ equations).  相似文献   

19.
Let n ≥ 4. The complex Lie algebra, which is attached to the unit form q(x1, x2,..., xn)■ and defined by generators and generalized Serre relations, is proved to be a finite-dimensional simple Lie algebra of type Dn, and realized by the Ringel-Hall Lie algebra of a Nakayama algebra. As its application of the realization, we give the roots and a Chevalley basis of the simple Lie algebra.  相似文献   

20.
We study cohomological induction for a pair $ {\left( {\mathfrak{g},\mathfrak{k}} \right)} $ , $ \mathfrak{g} $ being an infinitedimensional locally reductive Lie algebra and $ \mathfrak{k} \subset \mathfrak{g} $ being of the form $ \mathfrak{k}_{0} \subset C_{\mathfrak{g}} {\left( {\mathfrak{k}_{0} } \right)} $ , where $ \mathfrak{k}_{0} \subset \mathfrak{g} $ is a finite-dimensional reductive in $ \mathfrak{g} $ subalgebra and $ C_{\mathfrak{g}} {\left( {\mathfrak{k}_{0} } \right)} $ is the centralizer of $ \mathfrak{k}_{0} $ in $ \mathfrak{g} $ . We prove a general nonvanishing and $ \mathfrak{k} $ -finiteness theorem for the output. This yields, in particular, simple $ {\left( {\mathfrak{g},\mathfrak{k}} \right)} $ -modules of finite type over k which are analogs of the fundamental series of generalized Harish-Chandra modules constructed in [PZ1] and [PZ2]. We study explicit versions of the construction when $ \mathfrak{g} $ is a root-reductive or diagonal locally simple Lie algebra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号