首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
The Hamiltonian and multi-symplectic formulations for RLW equation are considered in this paper. A new twelve-point difference scheme which is equivalent to multi-symplectic Preissmann integrator is derived based on the multi-symplectic formulation of RLW equation. And the numerical experiments on solitary waves are also given. Comparing the numerical results for RLW equation with those for KdV equation, the inelastic behavior of RLW equation is shown.  相似文献   

2.
In this paper, nonlinear matrix equations of the form X + A*f1 (X)A + B*f2 (X)B = Q are discussed. Some necessary and sufficient conditions for the existence of solutions for this equation are derived. It is shown that under some conditions this equation has a unique solution, and an iterative method is proposed to obtain this unique solution. Finally, a numerical example is given to identify the efficiency of the results obtained.  相似文献   

3.
For two-dimensional boundary integral equations of the first kind with logarithmic kernels, the use of the conventional boundary element methods gives linear systems with dense matrix. In a recent work [J. Comput. Math., 22 (2004), pp. 287-298], it is demonstrated that the dense matrix can be replaced by a sparse one if appropriate graded meshes are used in the quadrature rules. The numerical experiments also indicate that the proposed numerical methods require less computational time than the conventional ones while the formal rate of convergence can be preserved. The purpose of this work is to establish a stability and convergence theory for this fast numerical method. The stability analysis depends on a decomposition of the coefficient matrix for the collocation equation. The formal orders of convergence observed in the numerical experiments are proved rigorously.  相似文献   

4.
In this paper, a space fractional differential equation is considered. The equation is obtained from the parabolic equation containing advection, diffusion and reaction terms by replacing the second order derivative in space by a fractional derivative in space of order. An implicit finite difference approximation for this equation is presented. The stability and convergence of the finite difference approximation are proved. A fractional-order method of lines is also presented. Finally, some numerical results are given.  相似文献   

5.
In this paper, we investigate the coupling of natural boundary element and finite element methods of exterior initial boundary value problems for hyperbolic equations. The governing equation is first discretized in time, leading to a time-step scheme, where an exterior elliptic problem has to be solved in each time step. Second, a circular artificial boundary FR consisting of a circle of radius R is introduced, the original problem in an unbounded domain is transformed into the nonlocal boundary value problem in abounded subdomain. And the natural integral equation and the Poisson integral formula are obtained in the infinite domainΩ2 outside circle of radius R. The coupled variational formulation is given. Only the function itself, not its normal derivative at artificial boundary ΓR, appears in the variational equation, so that the unknown numbers are reducedand the boundary element stiffness matrix has a few different elements. Such a coupled method is superior to the one based on direct boundary element method. This paper discusses finite element discretization for variational problem and its corresponding numerical technique, and the convergence for the numerical solutions. Finally, the numerical example is presented to illustrate feasibility and efficiency of this method.  相似文献   

6.
In this paper,the authors discuss an inverse boundary problem for the axi- symmetric steady-state heat equation,which arises in monitoring the boundary corrosion for the blast-furnace.Measure temperature at some locations are used to identify the shape of the corrosion boundary. The numerical inversion is complicated and consuming since the wear-line varies during the process and the boundary in the heat problem is not fixed.The authors suggest a method that the unknown boundary can be represented by a given curve plus a small perturbation,then the equation can be solved with fixed boundary,and a lot of computing time will be saved. A method is given to solve the inverse problem by minimizing the sum of the squared residual at the measuring locations,in which the direct problems are solved by axi- symmetric fundamental solution method. The numerical results are in good agreement with test model data as well as industrial data,even in severe corrosion case.  相似文献   

7.
In this paper, a unified model for time-dependent Maxwell equations in dispersive media is considered. The space-time DG method developed in [29] is applied to solve the underlying problem. Unconditional L2-stability and error estimate of order O τr+1+ hk+1/2 are obtained when polynomials of degree at most r and k are used for the temporal discretization and spatial discretization respectively. 2-D and 3-D numerical examples are given to validate the theoretical results. Moreover, numerical results show an ultra-convergence of order 2r + 1 in temporal variable t.  相似文献   

8.
In this paper, we further develop the local discontinuous Galerkin method to solve three classes of nonlinear wave equations formulated by the general KdV-Burgers type equations, the general fifth-order KdV type equations and the fully nonlinear K(n, n, n) equations, and prove their stability for these general classes of nonlinear equations. The schemes we present extend the previous work of Yan and Shu [30, 31] and of Levy, Shu and Yan [24] on local discontinuous Galerkin method solving partial differential equations with higher spatial derivatives. Numerical examples for nonlinear problems are shown to illustrate the accuracy and capability of the methods. The numerical experiments include stationary solitons, soliton interactions and oscillatory solitary wave solutions.The numerical experiments also include the compacton solutions of a generalized fifthorder KdV equation in which the highest order derivative term is nonlinear and the fully nonlinear K (n, n, n) equations.  相似文献   

9.
We give a classification of second-order polynomial solutions for the homogeneous k-Hessian equation σ_k[u] = 0. There are only two classes of polynomial solutions: One is convex polynomial; another one must not be(k + 1)-convex, and in the second case, the k-Hessian equations are uniformly elliptic with respect to that solution. Based on this classification, we obtain the existence of C∞local solution for nonhomogeneous term f without sign assumptions.  相似文献   

10.
In this article,(2+1)-dimensional time fractional Bogoyavlensky-Konopelchenko(BK)equation is studied,which describes the interaction of wave propagating along the x axis and y axis.To acquire the exact solutions of BK equation we employed sub equation method that is predicated on Riccati equation,and for numerical solutions the residual power series method is implemented.Some graphical results that compares the numerical and analytical solutions are given for di erent values of.Also comparative table for the obtained solutions is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号