首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Growth of solutions of second order linear differential equations   总被引:1,自引:0,他引:1  
This paper is devoted to studying the growth of solutions of equations of type f+h(z)eazf+Q(z)f=H(z) where h(z), Q(z) and H(z) are entire functions of order at most one. We prove four theorems of such type, improving previous results due to Gundersen and Chen.  相似文献   

2.
In this paper, we study the differential equations of the following form w2+R(z)2(w(k))=Q(z), where R(z), Q(z) are nonzero rational functions. We proved the following three conclusions: (1) If either P(z) or Q(z) is a nonconstant polynomial or k is an even integer, then the differential equation w2+P2(z)2(w(k))=Q(z) has no transcendental meromorphic solution; if P(z), Q(z) are constants and k is an odd integer, then the differential equation has only transcendental meromorphic solutions of the form f(z)=acos(bz+c). (2) If either P(z) or Q(z) is a nonconstant polynomial or k>1, then the differential equation w2+(zz0)P2(z)2(w(k))=Q(z) has no transcendental meromorphic solution, furthermore the differential equation w2+A(zz0)2(w)=B, where A, B are nonzero constants, has only transcendental meromorphic solutions of the form , where a, b are constants such that Ab2=1, a2=B. (3) If the differential equation , where P is a nonconstant polynomial and Q is a nonzero rational function, has a transcendental meromorphic solution, then k is an odd integer and Q is a polynomial. Furthermore, if k=1, then Q(z)≡C (constant) and the solution is of the form f(z)=Bcosq(z), where B is a constant such that B2=C and q(z)=±P(z).  相似文献   

3.
Entire functions that share a polynomial with their derivatives   总被引:1,自引:1,他引:0  
Let f be a nonconstant entire function, k and q be positive integers satisfying k>q, and let Q be a polynomial of degree q. This paper studies the uniqueness problem on entire functions that share a polynomial with their derivatives and proves that if the polynomial Q is shared by f and f CM, and if f(k)(z)−Q(z)=0 whenever f(z)−Q(z)=0, then ff. We give two examples to show that the hypothesis k>q is necessary.  相似文献   

4.
It was shown by S.N. Bernstein that if f is an entire function of exponential type τ such that |f(x)|?M for −∞<x<∞, then |f(x)|?Mτ for −∞<x<∞. If p is a polynomial of degree at most n with |p(z)|?M for |z|=1, then f(z):=p(eiz) is an entire function of exponential type n with |f(x)|?M on the real axis. Hence, by the just mentioned inequality for functions of exponential type, |p(z)|?Mn for |z|=1. Lately, many papers have been written on polynomials p that satisfy the condition znp(1/z)≡p(z). They do form an intriguing class. If a polynomial p satisfies this condition, then f(z):=p(eiz) is an entire function of exponential type n that satisfies the condition f(z)≡einzf(−z). This led Govil [N.K. Govil, Lp inequalities for entire functions of exponential type, Math. Inequal. Appl. 6 (2003) 445-452] to consider entire functions f of exponential type satisfying f(z)≡eiτzf(−z) and find estimates for their derivatives. In the present paper we present some additional observations about such functions.  相似文献   

5.
1Intr0ducti0nLetAden0tethesetofallfunctionsanalyticinA={z:Izl<1}.LetB={W:WEAandIW(z)l51}.Aisalocallyconvexlineaztop0l0gicalspacewithrespecttothetopologyofuniformconvergenceon`c0mpact8ubsetsofA-LetTh(c1,'tc.-1)={p(z):p(z)EA,Rop(z)>0,p(z)=1 clz czzz ' c.-lz"-l 4z" ',wherecl,',cn-1areforedcomplexconstants}.LetTh,.(b,,-..,b,-,)={p(z):P(z)'EAwithReP(z)>Oandp(z)=1 blz ' b.-lz"-l 4z" '-,wherebl,-'-jbu-1areffeedrealconstantsanddkarerealnumbersf0rk=n,n 1,'--}-LetTu(l1,'i'tI.-1)={…  相似文献   

6.
We study the differential equations w 2+R(z)(w (k))2 = Q(z), where R(z),Q(z) are nonzero rational functions. We prove
  1. if the differential equation w 2+R(z)(w′)2 = Q(z), where R(z), Q(z) are nonzero rational functions, admits a transcendental meromorphic solution f, then QC (constant), the multiplicities of the zeros of R(z) are no greater than 2 and f(z) = √C cos α(z), where α(z) is a primitive of $\tfrac{1} {{\sqrt {R(z)} }}$ such that √C cos α(z) is a transcendental meromorphic function.
  2. if the differential equation w 2 + R(z)(w (k))2 = Q(z), where k ? 2 is an integer and R,Q are nonzero rational functions, admits a transcendental meromorphic solution f, then k is an odd integer, QC (constant), R(z) ≡ A (constant) and f(z) = √C cos (az + b), where $a^{2k} = \tfrac{1} {A}$ .
  相似文献   

7.
This research is a continuation of a recent paper due to the first four authors. Shared value problems related to a meromorphic function f(z) and its shift f(z+c), where cC, are studied. It is shown, for instance, that if f(z) is of finite order and shares two values CM and one value IM with its shift f(z+c), then f is a periodic function with period c. The assumption on the order of f can be dropped if f shares two shifts in different directions, leading to a new way of characterizing elliptic functions. The research findings also include an analogue for shifts of a well-known conjecture by Brück concerning the value sharing of an entire function f with its derivative f.  相似文献   

8.
Oscillation of Solutions of Linear Differential Equations   总被引:1,自引:0,他引:1  
This paper is devoted to studying the growth problem, the zeros and fixed points distribution of the solutions of linear differential equations f″+e^-zf′+Q(z)f=F(z),whereQ(z)≡h(z)e^cz and c∈R.  相似文献   

9.
We investigate value distribution and uniqueness problems of difference polynomials of meromorphic functions. In particular, we show that for a finite order transcendental meromorphic function f with λ(1/f)<ρ(f) and a non-zero complex constant c, if n?2, then fn(z)f(z+c) assumes every non-zero value aC infinitely often. This research also shows that there exist two sets S1 with 9 (resp. 5) elements and S2 with 1 element, such that for a finite order nonconstant meromorphic (resp. entire) function f and a non-zero complex constant c, Ef(z)(Sj)=Ef(z+c)(Sj)(j=1,2) imply f(z)≡f(z+c). This gives an answer to a question of Gross concerning a finite order meromorphic function f and its shift.  相似文献   

10.
Estimates for the zeros of differences of meromorphic functions   总被引:6,自引:0,他引:6  
Let f be a transcendental meromorphic function and g(z)=f(z+c1)+f(z+c2)-2f(z) and g2(z)=f(z+c1)·f(z+c2)-f2(z).The exponents of convergence of zeros of differences g(z),g2(z),g(z)/f(z),and g2(z)/f2(z) are estimated accurately.  相似文献   

11.
In this paper we investigate the following “polynomial moment problem”: for a given complex polynomial P(z) and distinct a,bC to describe polynomials q(z) orthogonal to all powers of P(z) on [a,b]. We show that for given P(z), q(z) the condition that q(z) is orthogonal to all powers of P(z) is equivalent to the condition that branches of the algebraic function Q(P−1(z)), where , satisfy a certain system of linear equations over Z. On this base we provide the solution of the polynomial moment problem for wide classes of polynomials. In particular, we give the complete solution for polynomials of degree less than 10.  相似文献   

12.
The oscillatory and asymptotic behavior of solutions of a class of nth order nonlinear differential equations, with deviating arguments, of the form (E, δ) Lnx(t) + δq(t) f(x[g1(t)],…, x[gm(t)]) = 0, where δ = ± 1 and L0x(t) = x(t), Lkx(t) = ak(t)(Lk ? 1x(t))., k = 1, 2,…, n (. = ddt), is examined. A classification of solutions of (E, δ) with respect to their behavior as t → ∞ and their oscillatory character is obtained. The comparisons of (E, 1) and (E, ?1) with first and second order equations of the form y.(t) + c1(t) f(y[g1(t)],…, y[gm(t)]) = 0 and (an ? 1(t)z.(t)). ? c2(t) f(z[g1(t)],…, z[gm(t)]) = 0, respectively, are presented. The obtained results unify, extend and improve some of the results by Graef, Grammatikopoulos and Spikes, Philos and Staikos.  相似文献   

13.
This paper is devoted to proving some uniqueness type results for an entire function f(z) that shares a common set with its shift f(z+c) or its difference operator Δcf. We also give some applications to solutions of non-linear difference equations related to a conjecture proposed by C.C. Yang.  相似文献   

14.
We analyze the transcendental entire solutions of the following type of nonlinear differential equations: fn(z)+P(f)=p1eα1z+p2eα2z in the complex plane, where p1, p2 and α1, α2 are nonzero constants, and P(f) denotes a differential polynomial in f of degree at most n−1 with small functions of f as the coefficients.  相似文献   

15.
16.
In this article, we mainly devote to proving uniqueness results for entire functions sharing one small function CM with their shift and difference operator simultaneously. Let f(z) be a nonconstant entire function of finite order, c be a nonzero finite complex constant,and n be a positive integer. If f(z), f(z + c), and ?_c~n f(z) share 0 CM, then f(z + c) ≡ Af(z),where A(= 0) is a complex constant. Moreover, let a(z), b(z)( ≡ 0) ∈ S(f) be periodic entire functions with period c and if f(z)-a(z), f(z + c)-a(z), ?_c~n f(z)-b(z) share 0 CM, then f(z + c) ≡ f(z).  相似文献   

17.
A new class of bilinear relative equilibria of identical point vortices in which the vortices are constrained to be on two perpendicular lines, conveniently taken to be the x- and y-axes of a Cartesian coordinate system, is introduced and studied. In the general problem we have m vortices on the y-axis and n on the x-axis. We define generating polynomials q(z) and p(z), respectively, for each set of vortices. A second-order, linear ODE for p(z) given q(z) is derived. Several results relating the general solution of the ODE to relative equilibrium configurations are established. Our strongest result, obtained using Sturm’s comparison theorem, is that if p(z) satisfies the ODE for a given q(z) with its imaginary zeros symmetric relative to the x-axis, then it must have at least n?m+2 simple, real zeros. For m=2 this provides a complete characterization of all zeros, and we study this case in some detail. In particular, we show that, given q(z)=z 2+η 2, where η is real, there is a unique p(z) of degree n, and a unique value of η 2=A n , such that the zeros of q(z) and p(z) form a relative equilibrium of n+2 point vortices. We show that $A_{n} \approx\frac{2}{3}n + \frac{1}{2}$ , as n→∞, where the coefficient of n is determined analytically, the next-order term numerically. The paper includes extensive numerical documentation on this family of relative equilibria.  相似文献   

18.
In his paper [Ann. of Math.96 (1972)] Schmidt applied his results on the n-dimensional Roth theorem to study the n-dimensional Thue equation f(x1,…, xn) = c, and he proved, when f is of norm type, a necessary and sufficient criterion for the Thue equation to have only finitely many solutions. Here we shall study equations f(x1,…, xn) = p1z1 … ptzt and prove the p-adic analog of Schmidt's theorems.  相似文献   

19.
Let GF(q) be the finite field of order q, let Q(x) be an irreducible polynomial in GF(q)(x), and let h(T)(x) be a linear polynomial in GF(q)[x], where T:xxq. We use properties of the linear operator h(T) to give conditions for Q(h(T)(x)) to have a root of arbitrary degree k over GF(q), and we describe how to count the irreducible factors of Q(h(T)(x)) of degree k over GF(q). In addition we compare our results with those Ore which count the number of irreducible factors belonging to a linear polynomial having index k.  相似文献   

20.
We investigate the factorization of entire solutions of the following algebraic differential equations:
bn(z)finjn(f)+bn−1(z)fin−1jn−1(f)+?+b0(z)fi0j0(f)=b(z),  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号