首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper is concerned with the existence of positive solution to a class of singular fourth order elliptic equation of Kirchhoff type
$$\begin{aligned} \triangle ^2 u-\lambda M(\Vert \nabla u\Vert ^2)\triangle u-\frac{\mu }{\vert x\vert ^4}u=\frac{h(x)}{u^\gamma }+k(x)u^\alpha , \end{aligned}$$
under Navier boundary conditions, \(u=\triangle u=0\). Here \(\varOmega \subset {\mathbf {R}}^N\), \(N\ge 1\) is a bounded \(C^4\)-domain, \(0\in \varOmega \), h(x) and k(x) are positive continuous functions, \(\gamma \in (0,1)\), \(\alpha \in (0,1)\) and \(M:{\mathbf {R}}^+\rightarrow {\mathbf {R}}^+\) is a continuous function. By using Galerkin method and sharp angle lemma, we will show that this problem has a positive solution for \(\lambda > \frac{\mu }{\mu ^*m_0}\) and \(0<\mu <\mu ^*\). Here \(\mu ^*=\Big (\frac{N(N-4)}{4}\Big )^2\) is the best constant in the Hardy inequality. Besides, if \(\mu =0\), \(\lambda >0\) and hk are Lipschitz functions, we show that this problem has a positive smooth solution. If \(h,k\in C^{2,\,\theta _0}(\overline{\varOmega })\) for some \(\theta _0\in (0,1)\), then this problem has a positive classical solution.
  相似文献   

2.
Let S be a semigroup, and \(\mathbb {F}\) a field of characteristic \(\ne 2\). If the pair \(f,g:S \rightarrow \mathbb {F}\) is a solution of Wilson’s \(\mu \)-functional equation such that \(f \ne 0\), then g satisfies d’Alembert’s \(\mu \)-functional equation.  相似文献   

3.
Let f be a \(C^{1+\alpha }\) diffeomorphism of a compact Riemannian manifold and \(\mu \) an ergodic hyperbolic measure with positive entropy. We prove that for every continuous potential \(\phi \) there exists a sequence of basic sets \(\Omega _n\) such that the topological pressure \(P(f|\Omega _n,\phi )\) converges to the free energy \(P_{\mu }(\phi ) = h(\mu ) + \int \phi {d\mu }\). We also prove that for a suitable class of potentials \(\phi \) there exists a sequence of basic sets \(\Omega _n\) such that \(P(f|\Omega _n,\phi ) \rightarrow P(\phi )\).  相似文献   

4.
By using the independence structure of points following a determinantal point process, we study the radii of the spherical ensemble, the truncation of the circular unitary ensemble and the product ensemble with parameters n and k. The limiting distributions of the three radii are obtained. They are not the Tracy–Widom distribution. In particular, for the product ensemble, we show that the limiting distribution has a transition phenomenon: When \(k/n\rightarrow 0\), \(k/n\rightarrow \alpha \in (0,\infty )\) and \(k/n\rightarrow \infty \), the liming distribution is the Gumbel distribution, a new distribution \(\mu \) and the logarithmic normal distribution, respectively. The cumulative distribution function (cdf) of \(\mu \) is the infinite product of some normal distribution functions. Another new distribution \(\nu \) is also obtained for the spherical ensemble such that the cdf of \(\nu \) is the infinite product of the cdfs of some Poisson-distributed random variables.  相似文献   

5.
In this paper we consider the compactness of \(\beta \)-symplectic critical surfaces in a Kähler surface. Let M be a compact Kähler surface and \(\Sigma _i\subset M\) be a sequence of closed \(\beta _i\)-symplectic critical surfaces with \(\beta _i\rightarrow \beta _0\in (0,\infty )\). Suppose the quantity \(\int _{\Sigma _i}\frac{1}{\cos ^q\alpha _i}d\mu _i\) (for some \(q>4\)) and the genus of \(\Sigma _{i}\) are bounded, then there exists a finite set of points \({{\mathcal {S}}}\subset M\) and a subsequence \(\Sigma _{i'}\) which converges uniformly in the \(C^l\) topology (for any \(l<\infty \)) on compact subsets of \(M\backslash {{\mathcal {S}}}\) to a \(\beta _0\)-symplectic critical surface \(\Sigma \subset M\), each connected component of \(\Sigma \setminus {{\mathcal {S}}}\) can be extended smoothly across \({{\mathcal {S}}}\).  相似文献   

6.
Suppose \(\mu \) is an \(\alpha \)-dimensional fractal measure for some \(0<\alpha <n\). Inspired by the results proved by Strichartz (J Funct Anal 89:154–187, 1990), we discuss the \(L^p\)-asymptotics of the Fourier transform of \(fd\mu \) by estimating bounds of
$$\begin{aligned} \underset{L\rightarrow \infty }{\liminf }\ \frac{1}{L^k} \int _{|\xi |\le L}\ |\widehat{fd\mu }(\xi )|^pd\xi , \end{aligned}$$
for \(f\in L^p(d\mu )\) and \(2<p<2n/\alpha \). In a different direction, we prove a Hardy type inequality, that is,
$$\begin{aligned} \int \frac{|f(x)|^p}{(\mu (E_x))^{2-p}}d\mu (x)\le C\ \underset{L\rightarrow \infty }{\liminf }\frac{1}{L^{n-\alpha }} \int _{B_L(0)}|\widehat{fd\mu }(\xi )|^pd\xi \end{aligned}$$
where \(1\le p\le 2\) and \(E_x=E\cap (-\infty ,x_1]\times (-\infty ,x_2]\ldots (-\infty ,x_n]\) for \(x=(x_1,\ldots x_n)\in {\mathbb R}^n\) generalizing the one dimensional results by Hudson and Leckband (J Funct Anal 108:133–160, 1992).
  相似文献   

7.
We derive a discrete version of the results of Davini et al. (Convergence of the solutions of the discounted Hamilton–Jacobi equation. Invent Math, 2016). If M is a compact metric space, \(c : M\times M \rightarrow \mathbb {R}\) a continuous cost function and \(\lambda \in (0,1)\), the unique solution to the discrete \(\lambda \)-discounted equation is the only function \(u_\lambda : M\rightarrow \mathbb {R}\) such that
$$\begin{aligned} \forall x\in M, \quad u_\lambda (x) = \min _{y\in M} \lambda u_\lambda (y) + c(y,x). \end{aligned}$$
We prove that there exists a unique constant \(\alpha \in \mathbb {R}\) such that the family of \(u_\lambda +\alpha /(1-\lambda )\) is bounded as \(\lambda \rightarrow 1\) and that for this \(\alpha \), the family uniformly converges to a function \(u_0 : M\rightarrow \mathbb {R}\) which then verifies
$$\begin{aligned} \forall x\in X, \quad u_0(x) = \min _{y\in X}u_0(y) + c(y,x)+\alpha . \end{aligned}$$
The proofs make use of Discrete Weak KAM theory. We also characterize \(u_0\) in terms of Peierls barrier and projected Mather measures.
  相似文献   

8.
For an irrational number \(x\in [0,1)\), let \(x=[a_1(x), a_2(x),\ldots ]\) be its continued fraction expansion. Let \(\psi : \mathbb {N} \rightarrow \mathbb {N}\) be a function with \(\psi (n)/n\rightarrow \infty \) as \(n\rightarrow \infty \). The (upper, lower) fast Khintchine spectrum for \(\psi \) is defined as the Hausdorff dimension of the set of numbers \(x\in (0,1)\) for which the (upper, lower) limit of \(\frac{1}{\psi (n)}\sum _{j=1}^n\log a_j(x)\) is equal to 1. The fast Khintchine spectrum was determined by Fan, Liao, Wang, and Wu. We calculate the upper and lower fast Khintchine spectra. These three spectra can be different.  相似文献   

9.
Given a simple digraph D on n vertices (with \(n\ge 2\)), there is a natural construction of a semigroup of transformations \(\langle D\rangle \). For any edge (ab) of D, let \(a\rightarrow b\) be the idempotent of rank \(n-1\) mapping a to b and fixing all vertices other than a; then, define \(\langle D\rangle \) to be the semigroup generated by \(a \rightarrow b\) for all \((a,b) \in E(D)\). For \(\alpha \in \langle D\rangle \), let \(\ell (D,\alpha )\) be the minimal length of a word in E(D) expressing \(\alpha \). It is well known that the semigroup \(\mathrm {Sing}_n\) of all transformations of rank at most \(n-1\) is generated by its idempotents of rank \(n-1\). When \(D=K_n\) is the complete undirected graph, Howie and Iwahori, independently, obtained a formula to calculate \(\ell (K_n,\alpha )\), for any \(\alpha \in \langle K_n\rangle = \mathrm {Sing}_n\); however, no analogous non-trivial results are known when \(D \ne K_n\). In this paper, we characterise all simple digraphs D such that either \(\ell (D,\alpha )\) is equal to Howie–Iwahori’s formula for all \(\alpha \in \langle D\rangle \), or \(\ell (D,\alpha ) = n - \mathrm {fix}(\alpha )\) for all \(\alpha \in \langle D\rangle \), or \(\ell (D,\alpha ) = n - \mathrm {rk}(\alpha )\) for all \(\alpha \in \langle D\rangle \). We also obtain bounds for \(\ell (D,\alpha )\) when D is an acyclic digraph or a strong tournament (the latter case corresponds to a smallest generating set of idempotents of rank \(n-1\) of \(\mathrm {Sing}_n\)). We finish the paper with a list of conjectures and open problems.  相似文献   

10.
Let \(\{X(t):t\in \mathbb R_+\}\) be a stationary Gaussian process with almost surely (a.s.) continuous sample paths, \(\mathbb E X(t) = 0, \mathbb E X^2(t) = 1\) and correlation function satisfying (i) \(r(t) = 1 - C|t|^{\alpha } + o(|t|^{\alpha })\) as \(t\rightarrow 0\) for some \(0\le \alpha \le 2\) and \(C>0\); (ii) \(\sup _{t\ge s}|r(t)|<1\) for each \(s>0\) and (iii) \(r(t) = O(t^{-\lambda })\) as \(t\rightarrow \infty \) for some \(\lambda >0\). For any \(n\ge 1\), consider n mutually independent copies of X and denote by \(\{X_{r:n}(t):t\ge 0\}\) the rth smallest order statistics process, \(1\le r\le n\). We provide a tractable criterion for assessing whether, for any positive, non-decreasing function \(f, \mathbb P(\mathscr {E}_f)=\mathbb P(X_{r:n}(t) > f(t)\, \text { i.o.})\) equals 0 or 1. Using this criterion we find, for a family of functions \(f_p(t)\) such that \(z_p(t)=\mathbb P(\sup _{s\in [0,1]}X_{r:n}(s)>f_p(t))=O((t\log ^{1-p} t)^{-1})\), that \(\mathbb P(\mathscr {E}_{f_p})= 1_{\{p\ge 0\}}\). Consequently, with \(\xi _p (t) = \sup \{s:0\le s\le t, X_{r:n}(s)\ge f_p(s)\}\), for \(p\ge 0\) we have \(\lim _{t\rightarrow \infty }\xi _p(t)=\infty \) and \(\limsup _{t\rightarrow \infty }(\xi _p(t)-t)=0\) a.s. Complementarily, we prove an Erdös–Révész type law of the iterated logarithm lower bound on \(\xi _p(t)\), namely, that \(\liminf _{t\rightarrow \infty }(\xi _p(t)-t)/h_p(t) = -1\) a.s. for \(p>1\) and \(\liminf _{t\rightarrow \infty }\log (\xi _p(t)/t)/(h_p(t)/t) = -1\) a.s. for \(p\in (0,1]\), where \(h_p(t)=(1/z_p(t))p\log \log t\).  相似文献   

11.
We study the discrete spectrum of the Robin Laplacian \(Q^{\Omega }_\alpha \) in \(L^2(\Omega )\), \(u\mapsto -\Delta u, \quad D_n u=\alpha u \text { on }\partial \Omega \), where \(D_n\) is the outer unit normal derivative and \(\Omega \subset {\mathbb {R}}^{3}\) is a conical domain with a regular cross-section \(\Theta \subset {\mathbb {S}}^2\), n is the outer unit normal, and \(\alpha >0\) is a fixed constant. It is known from previous papers that the bottom of the essential spectrum of \(Q^{\Omega }_\alpha \) is \(-\alpha ^2\) and that the finiteness of the discrete spectrum depends on the geometry of the cross-section. We show that the accumulation of the discrete spectrum of \(Q^\Omega _\alpha \) is determined by the discrete spectrum of an effective Hamiltonian defined on the boundary and far from the origin. By studying this model operator, we prove that the number of eigenvalues of \(Q^{\Omega }_\alpha \) in \((-\infty ,-\alpha ^2-\lambda )\), with \(\lambda >0\), behaves for \(\lambda \rightarrow 0\) as
$$\begin{aligned} \dfrac{\alpha ^2}{8\pi \lambda } \int _{\partial \Theta } \kappa _+(s)^2\mathrm {d}s +o\left( \frac{1}{\lambda }\right) , \end{aligned}$$
where \(\kappa _+\) is the positive part of the geodesic curvature of the cross-section boundary.
  相似文献   

12.
We establish the linear independence of time-frequency translates for functions \(f\) on \(\mathbb {R}^d\) having one-sided decay \(\lim _{x \in H,\ |x|\rightarrow \infty } |f(x)| e^{c|x| \log |x|} = 0\) for all \(c>0\), which do not vanish on an affine half-space \(H \subset \mathbb {R}^d\).  相似文献   

13.
A stable-like Markov chain is a time-homogeneous Markov chain on the real line with the transition kernel \(p(x,\hbox {d}y)=f_x(y-x)\hbox {d}y\), where the density functions \(f_x(y)\), for large \(|y|\), have a power-law decay with exponent \(\alpha (x)+1\), where \(\alpha (x)\in (0,2)\). In this paper, under a certain uniformity condition on the density functions \(f_x(y)\) and additional mild drift conditions, we give sufficient conditions for recurrence in the case when \(0<\liminf _{|x|\longrightarrow \infty }\alpha (x)\), sufficient conditions for transience in the case when \(\limsup _{|x|\longrightarrow \infty }\alpha (x)<2\) and sufficient conditions for ergodicity in the case when \(0<\inf \{\alpha (x):x\in \mathbb {R}\}\). As a special case of these results, we give a new proof for the recurrence and transience property of a symmetric \(\alpha \)-stable random walk on \(\mathbb {R}\) with the index of stability \(\alpha \ne 1\).  相似文献   

14.
For a real-valued continuous function f(x) on \([0,\infty )\), we define
$$\begin{aligned} s(x)=\int _{0}^{x} f(u)du\quad \text {and}\quad \sigma _{\alpha } (x)= \int _{0}^{x}\left( 1-\frac{u}{x}\right) ^{\alpha }f(u)du \end{aligned}$$
for \(x>0\). We say that \(\int _{0}^{\infty } f(u)du\) is \((C, \alpha )\) integrable to L for some \(\alpha >-1\) if the limit \(\lim _{x \rightarrow \infty } \sigma _{\alpha } (x)=L\) exists. It is known that \(\lim _{x \rightarrow \infty } s(x) =L\) implies \(\lim _{x \rightarrow \infty }\sigma _{\alpha } (x) =L\) for all \(\alpha >-1\). The aim of this paper is twofold. First, we introduce some new Tauberian conditions for the \((C, \alpha )\) integrability method under which the converse implication is satisfied, and improve classical Tauberian theorems for the \((C,\alpha )\) integrability method. Next we give short proofs of some classical Tauberian theorems as special cases of some of our results.
  相似文献   

15.
We establish upper bounds for the number of primitive integer solutions to inequalities of the shape \(0<|F(x, y)| \le h\), where \(F(x , y) =(\alpha x + \beta y)^r -(\gamma x + \delta y)^r \in \mathbb {Z}[x ,y]\), \(\alpha \), \(\beta \), \(\gamma \) and \(\delta \) are algebraic constants with \(\alpha \delta -\beta \gamma \ne 0\), and \(r \ge 5\) and h are integers. As an important application, we pay special attention to binomial Thue’s inequalities \(|ax^r - by^r| \le c\). The proofs are based on the hypergeometric method of Thue and Siegel and its refinement by Evertse.  相似文献   

16.
In classical topology, it is proved that for a topological space X, every bounded Riesz map \(\varphi :C (X) \rightarrow {\mathbb {R}}\) is of the from \({\hat{x}}\) for a point \(x\in X\). In this paper, our main purpose is to prove a version of this result by lattice-valued maps. A ring representation of the from \(A\rightarrow {\mathbb {R}}\) is constructed. This representation is denoted by \(\widetilde{p_c}\) that is an onto f-ring homomorphism for every \(p\in \Sigma L\), where its index c, denotes a cozero lattice-valued map. Also, it is shown that for every Riesz map \(\phi :A\rightarrow {\mathbb {R}} \) and \(c\in F(A, L)\) with specific properties, there exists \(p\in \Sigma L\) such that \(\phi =\phi (1)\widetilde{p_c}\).  相似文献   

17.
Taking any \(p > 1\), we consider the asymptotically p-linear problem
$$\begin{aligned} \left\{ \begin{array}{ll} - {{\mathrm{div}}}(a(x,u,\nabla u)) + A_t(x,u,\nabla u)\ = \ \lambda ^\infty |u|^{p-2}u + g^\infty (x,u) &{}\quad \hbox {in}\;\Omega ,\\ u\ = \ 0 &{}\quad \hbox {on}\;\partial \Omega , \end{array} \right. \end{aligned}$$
where \(\Omega \) is a bounded domain in \(\mathbb R^N\), \(N\ge 2\), \(A(x,t,\xi )\) is a real function on \(\Omega \times \mathbb R\times \mathbb R^N\) which grows with power p with respect to \(\xi \) and has partial derivatives \(A_t(x,t,\xi ) = \frac{\partial A}{\partial t}(x,t,\xi )\), \(a(x,t,\xi ) = \nabla _\xi A(x,t,\xi )\). If \(A(x,t,\xi ) \rightarrow A^\infty (x,t)\) and \(\frac{g^\infty (x,t)}{|t|^{p-1}} \rightarrow 0\) as \(|t| \rightarrow +\infty \), suitable assumptions, variational methods and either the cohomological index theory or its related pseudo-index one, allow us to prove the existence of multiple nontrivial bounded solutions in the non-resonant case, i.e. if \(\lambda ^\infty \) is not an eigenvalue of the operator associated to \(\nabla _\xi A^\infty (x,\xi )\). In particular, while in [14] the model problem \(A(x,t,\xi ) = \mathcal{A}(x,t) |\xi |^p\) with \(p > N\) is studied, here our goal is twofold: extending such results not only to a more general family of functions \(A(x,t,\xi )\), but also to the more difficult case \(1 < p \le N\).
  相似文献   

18.
In this paper, we study the blow-up phenomena on the \(\alpha _k\)-harmonic map sequences with bounded uniformly \(\alpha _k\)-energy, denoted by \(\{u_{\alpha _k}: \alpha _k>1 \quad \text{ and } \quad \alpha _k\searrow 1\}\), from a compact Riemann surface into a compact Riemannian manifold. If the Ricci curvature of the target manifold has a positive lower bound and the indices of the \(\alpha _k\)-harmonic map sequence with respect to the corresponding \(\alpha _k\)-energy are bounded, then we can conclude that, if the blow-up phenomena occurs in the convergence of \(\{u_{\alpha _k}\}\) as \(\alpha _k\searrow 1\), the limiting necks of the convergence of the sequence consist of finite length geodesics, hence the energy identity holds true. For a harmonic map sequence \(u_k:(\Sigma ,h_k)\rightarrow N\), where the conformal class defined by \(h_k\) diverges, we also prove some similar results.  相似文献   

19.
In this paper, we establish the limit of empirical spectral distributions of quaternion sample covariance matrices. Motivated by Bai and Silverstein (Spectral analysis of large dimensional random matrices, Springer, New York, 2010) and Mar?enko and Pastur (Matematicheskii Sb, 114:507–536, 1967), we can extend the results of the real or complex sample covariance matrix to the quaternion case. Suppose \(\mathbf X_n = ({x_{jk}^{(n)}})_{p\times n}\) is a quaternion random matrix. For each \(n\), the entries \(\{x_{ij}^{(n)}\}\) are independent random quaternion variables with a common mean \(\mu \) and variance \(\sigma ^2>0\). It is shown that the empirical spectral distribution of the quaternion sample covariance matrix \(\mathbf S_n=n^{-1}\mathbf X_n\mathbf X_n^*\) converges to the Mar?enko–Pastur law as \(p\rightarrow \infty \), \(n\rightarrow \infty \) and \(p/n\rightarrow y\in (0,+\infty )\).  相似文献   

20.
Let R be a prime ring of characteristic different from 2 with Utumi quotient ring U and extended centroid C, \(f(x_1,\ldots ,x_n)\) be a multilinear polynomial over C, which is not central valued on R. Suppose that d is a non-zero derivation of R, F and G are two generalized derivations of R such that \(d\{F(u)u-uG^2(u)\}=0\) for all \(u\in f(R)\). Then one of the following holds:
  1. (i)
    there exist \(a, b, p\in U\), \(\lambda \in C\) such that \(F(x)=\lambda x+bx+xa^2\), \(G(x)=ax\), \(d(x)=[p, x]\) for all \(x\in R\) with \([p, b]=0\) and \(f(x_1,\ldots , x_n)^2\) is central valued on R;
     
  2. (ii)
    there exist \(a, b, p\in U\) such that \(F(x)=ax\), \(G(x)=xb\), \(d(x)=[p,x]\) for all \(x\in R\) and \(f(x_1,\ldots , x_n)^2\) is central valued on R with \([p, a-b^2]=0\);
     
  3. (iii)
    there exist \(a\in U\) such that \(F(x)=xa^2\) and \(G(x)=ax\) for all \(x\in R\);
     
  4. (iv)
    there exists \(a\in U\) such that \(F(x)=a^2x\) and \(G(x)=xa\) for all \(x\in R\) with \(a^2\in C\);
     
  5. (v)
    there exist \(a, p\in U\), \(\lambda , \alpha , \mu \in C\) such that \(F(x)=\lambda x-a^2x\), \(G(x)=xa\) and \(d(x)=[p,x]\) for all \(x\in R\) with \(a^2=\mu -\alpha p\) and \(\alpha p^2+(\lambda -2\mu ) p\in C\);
     
  6. (vi)
    there exist \(a\in U\), \(\lambda \in C\) such that R satisfies \(s_4\) and either \(F(x)=\lambda x+xa^2\), \(G(x)=ax\) or \(F(x)=\lambda x-a^2x\), \(G(x)=xa\) for all \(x\in R\).
     
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号