首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
We focus in this study on the convergence of a class of relaxation numerical schemes for hyperbolic scalar conservation laws including stiff source terms. Following Jin and Xin, we use as approximation of the scalar conservation law, a semi-linear hyperbolic system with a second stiff source term. This allows us to avoid the use of a Riemann solver in the construction of the numerical schemes. The convergence of the approximate solution toward a weak solution is established in the cases of first and second order accurate MUSCL relaxed methods.

  相似文献   


2.
In this article, we study the convergence analysis for the initial and boundary value problem of parabolic equations on a disk with singular solutions. It is assumed that the exact solution performs singular properties that its derivatives go to infinity at the boundary of the disk. We propose a fully implicit time-stepping numerical scheme. A stretching polynomial-like function with a parameter is used to construct a local grid refinement. Over the nonuniform partition, we combine the Swartztrauber-Sweet scheme and the backward Euler method in spatial and temporal discretization, respectively. We carry out convergence analysis and analyze the effects of the parameter. It is shown that our numerical scheme is of first order accuracy for temporal discretization and of almost second order accuracy for spatial discretization. Numerical experiments are performed to illustrate our analysis results and show that there exists an optimal value for the parameter to obtain a best approximate solution.  相似文献   

3.
We present a parallel matrix‐free implicit finite volume scheme for the solution of unsteady three‐dimensional advection‐diffusion‐reaction equations with smooth and Dirac‐Delta source terms. The scheme is formally second order in space and a Newton–Krylov method is employed for the appearing nonlinear systems in the implicit time integration. The matrix‐vector product required is hardcoded without any approximations, obtaining a matrix‐free method that needs little storage and is well‐suited for parallel implementation. We describe the matrix‐free implementation of the method in detail and give numerical evidence of its second‐order convergence in the presence of smooth source terms. For nonsmooth source terms, the convergence order drops to one half. Furthermore, we demonstrate the method's applicability for the long‐time simulation of calcium flow in heart cells and show its parallel scaling. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq31: 143–167, 2015  相似文献   

4.
求解奇异摄动转向点问题的一个二阶一致收敛格式   总被引:2,自引:0,他引:2       下载免费PDF全文
本文对奇异摄动转向点问题构造了一个关于ε一致收敛的二阶正型格式,并给出了数值例子.  相似文献   

5.
The maximum entropy method for linear ill-posed problems with modeling error and noisy data is considered and the stability and convergence results are obtained. When the maximum entropy solution satisfies the “source condition”, suitable rates of convergence can be derived. Considering the practical applications, ana posteriori choice for the regularization parameter is presented. As a byproduct, a characterization of the maximum entropy regularized solution is given.  相似文献   

6.
In this article, we derive the exact rate of convergence of some approximation schemes associated to scalar stochastic differential equations driven by a fractional Brownian motion with Hurst index H. We consider two cases. If H>1/2, the exact rate of convergence of the Euler scheme is determined. We show that the error of the Euler scheme converges almost surely to a random variable, which in particular depends on the Malliavin derivative of the solution. This result extends those contained in J. Complex. 22(4), 459–474, 2006 and C.R. Acad. Sci. Paris, Ser. I 340(8), 611–614, 2005. When 1/6<H<1/2, the exact rate of convergence of the Crank-Nicholson scheme is determined for a particular equation. Here we show convergence in law of the error to a random variable, which depends on the solution of the equation and an independent Gaussian random variable.  相似文献   

7.
We present a well-balanced numerical scheme for approximating the solution of the Baer-Nunziato model of two-phase flows by balancing the source terms and discretizing the compaction dynamics equation. First, the system is transformed into a new one of three subsystems: the first subsystem consists of the balance laws in the gas phase, the second subsystem consists of the conservation law of the mass in the solid phase and the conservation law of the momentum of the mixture, and the compaction dynamic equation is considered as the third subsystem. In the first subsystem, stationary waves are used to build up a well-balanced scheme which can capture equilibrium states. The second subsystem is of conservative form and thus can be numerically treated in a standard way. For the third subsystem, the fact that the solid velocity is constant across the solid contact suggests us to compose the technique of the Engquist-Osher scheme. We show that our scheme is capable of capturing exactly equilibrium states. Moreover, numerical tests show the convergence of approximate solutions to the exact solution.  相似文献   

8.
We construct a class of multigrid methods for convection–diffusion problems. The proposed algorithms use first order stable monotone schemes to precondition the second order standard Galerkin finite element discretization. To speed up the solution process of the lower order schemes, cross-wind-block reordering of the unknowns is applied. A V-cycle iteration, based on these algorithms, is then used as a preconditioner in GMRES. The numerical examples show that this method is convergent without imposing any constraint on the coarsest grid and the convergence of the preconditioned method is uniform.  相似文献   

9.
A second order accurate method in the infinity norm is proposed for general three dimensional anisotropic elliptic interface problems in which the solution and its derivatives, the coefficients, and source terms all can have finite jumps across one or several arbitrary smooth interfaces. The method is based on the 2D finite element-finite difference (FE-FD) method but with substantial differences in method derivation, implementation, and convergence analysis. One of challenges is to derive 3D interface relations since there is no invariance anymore under coordinate system transforms for the partial differential equations and the jump conditions. A finite element discretization whose coefficient matrix is a symmetric semi-positive definite is used away from the interface; and the maximum preserving finite difference discretization whose coefficient matrix part is an M-matrix is constructed at irregular elements where the interface cuts through. We aim to get a sharp interface method that can have second order accuracy in the point-wise norm. We show the convergence analysis by splitting errors into several parts. Nontrivial numerical examples are presented to confirm the convergence analysis.  相似文献   

10.
In this article, we study a streamline diffusion‐based discontinuous Galerkin approximation for the numerical solution of a coupled nonlinear system of Schrödinger equations and extend the resulting method to a multiscale variational scheme. We prove stability estimates and derive optimal convergence rates due to the maximal available regularity of the exact solution. In the weak formulation, to make the underlying bilinear form coercive, it was necessary to supply the equation system with an artificial viscosity term with a small coefficient of order proportional to a power of mesh size. We justify the theory by implementing an example of an application of the time‐dependent Schrödinger equation in the coupled ultrafast laser. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

11.
Alternating direction implicit (ADI) schemes are computationally efficient and widely utilized for numerical approximation of the multidimensional parabolic equations. By using the discrete energy method, it is shown that the ADI solution is unconditionally convergent with the convergence order of two in the maximum norm. Considering an asymptotic expansion of the difference solution, we obtain a fourth‐order, in both time and space, approximation by one Richardson extrapolation. Extension of our technique to the higher‐order compact ADI schemes also yields the maximum norm error estimate of the discrete solution. And by one extrapolation, we obtain a sixth order accurate approximation when the time step is proportional to the squares of the spatial size. An numerical example is presented to support our theoretical results. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

12.
讨论了二维非定常不可压Navier-Stokes方程的两重网格方法.此方法包括在粗网格上求解一个非线性问题,在细网格上求解一个Stokes问题.采用一种新的全离散(时间离散用Crank-Nicolson格式,空间离散用混合有限元方法)格式数值求解N-S方程.证明了该全离散格式的稳定性.给出了L2误差估计.对比标准有限元方法,在保持同样精度的前提下,TGM能节省大量的计算量.  相似文献   

13.
Solutions of conservation laws satisfy the monotonicity property: the number of local extrema is a non-increasing function of time, and local maximum/minimum values decrease/increase monotonically in time. This paper investigates this property from a numerical standpoint. We introduce a class of fully discrete in space and time, high order accurate, difference schemes, called generalized monotone schemes. Convergence toward the entropy solution is proven via a new technique of proof, assuming that the initial data has a finite number of extremum values only, and the flux-function is strictly convex. We define discrete paths of extrema by tracking local extremum values in the approximate solution. In the course of the analysis we establish the pointwise convergence of the trace of the solution along a path of extremum. As a corollary, we obtain a proof of convergence for a MUSCL-type scheme that is second order accurate away from sonic points and extrema.

  相似文献   


14.
We prove the convergence of a semi-implicit monotone finite difference scheme approximating an initial-boundary value problem for a spatially one-dimensional quasilinear strongly degenerate parabolic equation, which is supplied with two different inhomogeneous flux-type boundary conditions. This problem arises in the modeling of the sedimentation-consolidation process. We formulate the definition of entropy solution of the model in the sense of Kru kov and prove convergence of the scheme to the unique entropy solution of the problem, up to satisfaction of one of the boundary conditions.

  相似文献   


15.
We consider a splitting finite-difference scheme for an initial-boundary value problem for a two-dimensional nonlinear evolutionary equation. The problem is split into nonlinear and linear parts. The linear part is also split into locally one-dimensional equations. We prove the convergence and stability of the scheme in L 2 and C norms. Printed in Lietuvos Matematikos Rinkinys, Vol. 45, No. 3, pp. 413–434, July–September, 2005.  相似文献   

16.
We study the convergence rate of Glimm scheme for general systems of hyperbolic conservation laws without the assumption that each characteristic field is either genuinely nonlinear or linearly degenerate. We first give a sharper estimate of the error arising from the wave tracing argument by a careful analysis of the interaction between small waves. With this key estimate, the convergence rate is shown to be , which is sharper compared to given in [T. Yang, Convergence rate of Glimm scheme for general systems of hyperbolic conservation laws, Taiwanese J. Math. 7 (2) (2003) 195-205]. However, it is still slower than given in [A. Bressan, A. Marson, Error bounds for a deterministic version of the Glimm scheme, Arch. Ration. Mech. Anal. 142 (2) (1998) 155-176] for systems with each characteristic field being genuinely nonlinear or linearly degenerate. Here s is the mesh size and α is any positive constant.  相似文献   

17.
In this paper, we study the convergence of a finite difference scheme on nonuniform grids for the solution of second-order elliptic equations with mixed derivatives and variable coefficients in polygonal domains subjected to Dirichlet boundary conditions. We show that the scheme is equivalent to a fully discrete linear finite element approximation with quadrature. It exhibits the phenomenon of supraconvergence, more precisely, for s ∈ [1,2] order O(h s )-convergence of the finite difference solution, and its gradient is shown if the exact solution is in the Sobolev space H 1+s (Ω). In the case of an equation with mixed derivatives in a domain containing oblique boundary sections, the convergence order is reduced to O(h 3/2?ε) with ε > 0 if u ∈ H 3(Ω). The second-order accuracy of the finite difference gradient is in the finite element context nothing else than the supercloseness of the gradient. For s ∈ {1,2}, the given error estimates are strictly local.  相似文献   

18.
This paper is devoted to discuss a multidimensional backward heat conduction problem for time‐fractional diffusion equation with inhomogeneous source. This problem is ill‐posed. We use quasi‐reversibility regularization method to solve this inverse problem. Moreover, the convergence estimates between regularization solution and the exact solution are obtained under the a priori and the a posteriori choice rules. Finally, the numerical examples for one‐dimensional and two‐dimensional cases are presented to show that our method is feasible and effective.  相似文献   

19.
This paper aims to investigate the numerical approximation of a general second order parabolic stochastic partial differential equation(SPDE) driven by multiplicative and additive noise. Our main interest is on such SPDEs where the nonlinear part is stronger than the linear part, usually called stochastic dominated transport equations. Most standard numerical schemes lose their good stability properties on such equations, including the current linear implicit Euler method. We discretize the SPDE in space by the finite element method and propose a novel scheme called stochastic Rosenbrock-type scheme for temporal discretization. Our scheme is based on the local linearization of the semi-discrete problem obtained after space discretization and is more appropriate for such equations. We provide a strong convergence of the new fully discrete scheme toward the exact solution for multiplicative and additive noise and obtain optimal rates of convergence. Numerical experiments to sustain our theoretical results are provided.  相似文献   

20.
In this paper, we first prove that the existence of a solution of SDEs under the assumptions that the drift coefficient is of linear growth and path-dependent, and diffusion coefficient is bounded, uniformly elliptic and Hölder continuous. We apply Gaussian upper bound for a probability density function of a solution of SDE without drift coefficient and local Novikov condition, in order to use Maruyama–Girsanov transformation. The aim of this paper is to prove the existence with explicit representations (under linear/super-linear growth condition), Gaussian two-sided bound and Hölder continuity (under sub-linear growth condition) of a probability density function of a solution of SDEs with path-dependent drift coefficient. As an application of explicit representation, we provide the rate of convergence for an Euler–Maruyama (type) approximation, and an unbiased simulation scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号