首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 281 毫秒
1.
在人体血液自然运动过程中,人活体内存在顺时针的血液自然运动,由于静脉血液成分在其起源处成分不同,存在自然分类,这也就形成了多个以不同成分进行顺时针运动的血液自然运动环,这些不同成分的血液自然运动环在自然交汇的过程中就会自然发生关系,应用一般系统结构理论研究这些活体血液自然运动环之间的关系,得出人体血液自然运动环关系定理及血液自然运动环之间关系的模型,应用一般系统结构理论,研究人体血液复杂自然运动环网络的关系流,包括肠系膜上静脉流、肠系膜下静脉流、脾静脉流、肝静脉流、肾静脉流、下腔静脉流、上腔静脉流等和人体血液复杂自然运动环网络行为或功能之间的关系及规律,将推动人体血液复杂自然运动环网络的研究.  相似文献   

2.
对现有主要血液流动模拟方法进行了对比研究.以单个直血管为研究对象,分别用牛顿单相流模型、非牛顿单相流模型、液固两相流剪切稀化模型、液固两相流颗粒动力学模型和血液两相流修正模型计算了血液流场,然后对比了五种模型模拟得到的血液动力学参数:血液流速、红细胞体积分数、流体粘度和壁面剪切应力.结果表明:血液组成和粘度方程的选择对血液速度场计算结果有明显影响;流体本构方程和升力公式对壁面剪切应力计算结果均有明显影响;液固两相流颗粒动力学模型计算得到的血液粘度远偏离正常的血液粘度,模型不适用于模拟稳态血液流动;血液两相流修正模型可以较准确模拟红细胞在血管内的径向分布及其影响.研究结果可为今后相关研究中血液模拟方法的选择提供指导.  相似文献   

3.
动脉中血液脉动流的一种分析方法   总被引:5,自引:0,他引:5  
动脉中的血液流动被分解为平衡状态(相当于平均压定常流状态)和叠加在平衡状态上的周期脉动流,利用Fung的血管应变能密度函数分析血管壁在平衡状态下的应力-应变关系,确定相对于平衡状态血管作微小变形所对应的周向弹性模量和轴向弹性模量,并建立在脉动压力作用下相应的管壁运动方程,与线性化Navier-Stokes方程联立,求得血液流动速度和血管壁位移的分析表达式,详细讨论血管壁周向和轴向弹性性质差异对脉博波、血液脉动流特性以及血管壁运动的影响.  相似文献   

4.
血液动力学问题是生物力学心血管系统中的重要研究课题.血管内斑块处,血管截面和血管壁的材质发生变化,对血液流动产生重要影响.血液流动中基本波及其相互作用对探究血液流动的规律、生理学意义及与疾病的关系有着重要的意义.本文研究血液动力学血液流动简化数学模型的基本波的相互作用.血管流模型是3×3非严格双曲型方程组.构造性地得到了初值为三段常状态时,血管流问题的解,即解决了激波与驻波的相互作用问题.特别地,给出四种后前激波与驻波的相互作用的结果.  相似文献   

5.
饮酒后血液中酒精含量变化的数学模型   总被引:1,自引:0,他引:1  
本文通过分析酒精在人体中的吸收与扩散过程,利用药物动力学中的房室模型的方法,建立饮酒后血液中酒精含量变化的数学模型.  相似文献   

6.
为了探索血液动力学因素对颅内动脉瘤的影响,分析动脉瘤的形成、生长和破裂与血流动力学的关系,为治疗颅内动脉瘤提供技术参考和研究方法.数值模拟部分:依据个体化脑部动脉瘤患者的CT三维重建模型,从计算流体力学的角度出发,将血液假设为血浆和红细胞组成的两相流流体进行瞬态数值模拟.并且与经典牛顿流体与非牛顿流体进行对比.实验部分:利用与数值模拟相同的边界条件进行PIV流场可视化分析.得到一个心跳周期内的血液动力学参数分布情况和相同条件下实验结果.与牛顿流体和非牛顿流体相比,两相流在特征点的血液流速波动更为复杂;在壁面剪切力分布更加不"平滑",红细胞的粒子速率和沉积对颅内动脉瘤有着至关重要的影响,两相流更符合真实血液流动.实验结果证明血液流动会在动脉瘤内部形成低速旋涡区域,并且随着时间的变化旋涡中心不断转移,与数值模拟结果相吻合.  相似文献   

7.
血液流动与血管壁运动   总被引:1,自引:0,他引:1  
本文讨论了哺乳动物循环系统的血液流动与血管壁运动之间的相互作用问题.在假定流动处于稳定的振荡流动情况下,导得了一组血液流动速度分布公式,压力分布公式以及约束应力公式,管壁位移公式.把Kuchar的公式从定常流动情况推广到非定常的振荡流动情况.文中还讨论了动脉血管壁的弹性效应问题.  相似文献   

8.
本文研究了微血管自律运动引起的血液流动,着重分析了血液的粘弹性质对压力升高及壁面摩阻的影响.结果表明,微血管自律运动具有人体“第二心脏”的作用,血液粘弹性质的影响与Weissenberg数及平均流量的大小有关.  相似文献   

9.
锥形血管入口区域内管壁与血液的耦合运动   总被引:6,自引:0,他引:6  
本文研究了锥形血管入口区域内血管壁与血液间的耦合问题。对具有锥度角的弹性血管入口区域内的管壁运动和血液流动建立的相互耦合作用的数学模型,在满足相应的边界条件下求得了一组血液流动的速度分布公式、压力分布公式以及管壁运动公式,得出了一些重要的结论。  相似文献   

10.
目前,针对深度学习的人体行为识别研究,往往采用视频中的全局信息对人体行为进行分析.然而,局部信息缺失造成的特征提取不完备,同样会导致识别精度急剧下降.由此,提出了基于多流深度学习的人体行为识别方法,将人体局部信息与全局信息相结合,通过局部不同特征的精确识别,使人体行为识别更加准确.实验表明,与现有深度学习方法相比,提出的方法在数据集UCF101和HMDB51上识别精度分别平均提高了约4.0%和6.2%.  相似文献   

11.
本文所提出的计算方法,其基础是对血液流动微连续统模型作了一种边界条件的改进,设想了血管内壁面上血细胞速度可能不为零.对于由Eringen所提出的关于刚性圆管中稳态血液流动方程,假设了血管内壁面上血细胞的旋转速度,及血细胞旋转速度分布曲线在管轴处的斜率,导出了计算血管中速度分布曲线的方法,并将按此理论计算而得的曲线与Bugliarello和Hayden在实验中测得的分布曲线及由Turk,Sylvester和Ariman所提出的计算公式的结果相比较.  相似文献   

12.
采用计算流体力学方法分别对6种狭窄率的颈动脉内非Newton瞬态血流进行流固耦合数值分析.研究了狭窄率对颈动脉内血流动力学分布的影响,以探索狭窄率与颈动脉内粥样斑块形成的关系.结果表明,狭窄率不同的颈动脉内血流动力学分布特性明显不同,与0.05,0.1,0.2,0.3和04这5种狭窄率的颈动脉内血流动力学分布特性相比,狭窄率为0.5的颈动脉内血流动力学分布独特,狭窄部位附近区域存在面积较大的低速涡流区;复杂血流作用下,该区域分布低壁面压力,异常壁面切应力,较大管壁形变量和von Mises应力;血流速度低使血液中脂质、纤维蛋白等大分子易沉积,低壁面压力引起的明显“负压”效应引发脑部供血障碍,异常壁面切应力作用下粥样斑块易破裂与脱落,并堵塞脑血管,较大的von Mises应力易引起应力集中,导致血管破裂,为脑卒中发生提供有利条件.因此,狭窄率越大对颈动脉内血流动力学分布的影响越显著,促进颈动脉粥样斑块形成与发展,并引发缺血性脑卒中.  相似文献   

13.
主动脉弓及分支血管内非稳态血流分析   总被引:2,自引:2,他引:0  
运用流体力学中的三维非定常Navier-Stokes方程作为血液流动的控制方程,并采用计算流体力学方法对人体主动脉弓及分支血管内非Newton(牛顿)血液黏度模型下血流进行瞬态数值模拟.分析了一个心动周期内不同时刻血流动力学特征参数的分布对动脉粥样硬化斑块形成的影响,并与Newton血液黏度模型下的血管壁面压力和壁面切应力特征参数进行对比.结果表明:与Newton血液模型相比,非Newton血液模型下血流分布更符合真实血流特性;在心动收缩期,分支血管外侧壁附近存在面积较大的低速涡流区,该区域内血管壁面压力与壁面切应力具有较大的变化量,血液中的血小板、脂质和纤维蛋白等易沉积,血管内壁易疲劳损伤并发生血管重构,促使动脉粥样硬化斑块形成;而在心动舒张期,分支血管内血流速度分布均匀,血管壁面压力与壁面切应力变化量较小,血管壁受到较小的应力作用,对动脉粥样硬化斑块形成的作用较小.  相似文献   

14.
研究了两个不同的非牛顿血液流动模型:低粘性剪切简单幂律模型和低粘性剪切及粘弹性振荡流的广义Maxwell模型.同时利用这两个非牛顿模型和牛顿模型,研究了磁场中刚性和弹性直血管中血液的正弦型脉动.在生理学条件下,大动脉中血液的弹性对其流动性态似乎并不产生影响,单纯低粘性剪切模型可以逼真地模拟这种血液流动.利用高剪切幂律模型模拟弹性血管中的正弦型脉动流,发现在同一压力梯度下,与牛顿流体相比较,幂律流体的平均流率和流率变化幅度都更小.控制方程用Crank-Niclson方法求解.弹性动脉中血液受磁场作用是产生此结果的直观原因.在主动脉生物流的模拟中,与牛顿流体模型比较,发现在匹配流率曲线上,幂律模型的平均壁面剪切应力增大,峰值壁面剪切应力减小.讨论了弹性血管横切磁场时的血液流动,评估了血管形状和表面不规则等因素的影响.  相似文献   

15.
The pressure and flow regulation in the individual functional unit of the kidney (the nephron) tends to operate in an unstable regime. For normal rats, the regulation displays regular self-sustained oscillations, but for rats with high blood pressure the oscillations become chaotic. We explain the mechanisms responsible for this behavior and discuss the involved bifurcations. Experimental data show that neighboring nephrons adjust their pressure and flow regulation in accordance with one another. For rats with normal blood pressure, in-phase as well as anti-phase synchronization can be observed. For spontaneously hypertensive rats, indications of chaotic phase synchronization are found. Accounting for a hermodynamics as well as for a vascular coupling between nephrons that share a common interlobular artery, we present a model of the interaction of the pressure and flow regulations between adjacent nephrons. It is shown that this model, with physiologically realistic parameter values, can reproduce the different types of experimentally observed synchronization, including multistability and partial phase synchronization with respect to the slow and fast dynamics.  相似文献   

16.
In some diseases there is a focal pattern of velocity in regions of bifurcation, and thus the dynamics of bifurcation has been investigated in this work. A computational model of blood flow through branching geometries has been used to investigate the influence of bifurcation on blood flow distribution. The flow analysis applies the time-dependent, three-dimensional, incompressible Navier–Stokes equations for Newtonian fluids. The governing equations of mass and momentum conservation were solved to calculate the pressure and velocity fields. Movement of blood flow from an arteriole to a venule via a capillary has been simulated using the volume of fluid (VOF) method. The proposed simulation method would be a useful tool in understanding the hydrodynamics of blood flow where the interaction between the RBC deformation and blood flow movement is important. Discrete particle simulation has been used to simulate the blood flow in a bifurcation with solid and fluid particles. The fluid particle method allows for modeling the plasma as a particle ensemble, where each particle represents a collective unit of fluid, which is defined by its mass, moment of inertia, and translational and angular momenta. These kinds of simulations open a new way for modeling the dynamics of complex, viscoelastic fluids at the micro-scale, where both liquid and solid phases are treated with discrete particles.  相似文献   

17.
An efficient integral equation based solver is constructed for the electrostatic problem on domains with cuboidal inclusions. It can be used to compute the polarizability of a dielectric cube in a dielectric background medium at virtually every permittivity ratio for which it exists. For example, polarizabilities accurate to between five and ten digits are obtained (as complex limits) for negative permittivity ratios in minutes on a standard workstation. In passing, the capacitance of the unit cube is determined with unprecedented accuracy. With full rigor, we develop a natural mathematical framework suited for the study of the polarizability of Lipschitz domains. Several aspects of polarizabilities and their representing measures are clarified, including limiting behavior both when approaching the support of the measure and when deforming smooth domains into a non-smooth domain. The success of the mathematical theory is achieved through symmetrization arguments for layer potentials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号