首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For each t ? 0, let A(t) generate a contraction semigroup on a Banach space L. Suppose the solution of ut = ?A(t)u is given by an evolution operator V?(t, s). Conditions are given under which V?((t+s)?, s?) converges strongly as ? → 0 to a semigroup T(t) generated by the closure of A?f ≡ limT→∞(1T) ∝0TA(t)f dt.This result is applied to the following situation: Let B generate a contraction group S(t) and the closure of ?A + B generate a contraction semigroup S?(t). Conditions are given under which S(?t?) S?(t?) converges strongly to a semigroup generated by the closure of A?f ≡ limT→∞(1T) ∝ S(?t) AS(t)f dt. This work was motivated by and generalizes a result of Pinsky and Ellis for the linearized Boltzmann Equation.  相似文献   

2.
Sufficient conditions are developed for the null-controllability of the nonlinear delay process (1) x?(t) = L(t, xt) + B(t) u(t) + f(t, xt, u(t)) when the values of the control functions u lie in an m-dimensional unit cube Cm of Em. Conditions are placed on f which guarantee that if the uncontrolled system x?(t) = L(t, xt) is uniformly asymptotically stable and if the linear control system x(t) = L(t, xt) + B(t) u(t) is proper, then (1) is null-controllable.  相似文献   

3.
We consider the pure initial value problem for the system of equations νt = νxx + ?(ν) ? w, wt= ε(ν ? γw), ε, γ ? 0, the initial data being (ν(x, 0), w(x, 0)) = (?(x), 0). Here ?(v) = ?v + H(v ? a), where H is the Heaviside step function and a ? (0, 12). This system is of the FitzHugh-Nagumo type and has several applications including nerve conduction and distributed chemical/ biochemical systems. It is demonstrated that this system exhibits a threshold phenomenon. This is done by considering the curve s(t) defined by s(t) = sup{x: v(x, t) = a}. The initial datum, ?(x), is said to be superthreshold if limt→∞ s(t) = ∞. It is proven that the initial datum is superthreshold if ?(x) > a on a sufficiently long interval, ?(x) is sufficiently smooth, and ?(x) decays sufficiently fast to zero as ¦x¦ → ∞.  相似文献   

4.
We consider functionals of the form: If(u) = ∝Tf[t, u(t)]μ(dt), which are defined on spaces Lp(T, Rk), and we study for these functionals the properties of a convergence for which the conjugacy If → If1 is a continuous operator.  相似文献   

5.
This paper treats the quasilinear, parabolic boundary value problem uxx ? ut = ??(x, t, u)u(0, t) = ?1(t); u(l, t) = ?2(t) on an infinite strip {(x, t) ¦ 0 < x < l, ?∞ < t < ∞} with the functions ?(x, t, u), ?1(t), ?2(t) being periodic in t. The major theorem of the paper gives sufficient conditions on ?(x, t, u) for this problem to have a periodic solution u(x, t) which may be constructed by successive approximations with an integral operator. Some corollaries to this theorem offer more explicit conditions on ?(x, t, u) and indicate a method for determining the initial estimate at which the iteration may begin.  相似文献   

6.
We consider the first initial-boundary value problem for (?u?t) + ?L1u + L0u = f(L0 and L1 are linear elliptic partial differential operators) and investigate the properties of u(x, t, ?) as ? ↓ 0 in the maximum norm. Special attention is paid to approximations obtained by the boundary layer method. We use a priori estimates.  相似文献   

7.
Results on partition of energy and on energy decay are derived for solutions of the Cauchy problem ?u?t + ∑j = 1n Aj?u?xj = 0, u(0, x) = ?(x). Here the Aj's are constant, k × k Hermitian matrices, x = (x1,…, xn), t represents time, and u = u(t, x) is a k-vector. It is shown that the energy of Mu approaches a limit EM(?) as ¦ t ¦ → ∞, where M is an arbitrary matrix; that there exists a sufficiently large subspace of data ?, which is invariant under the solution group U0(t) and such that U0(t)? = 0 for ¦ x ¦ ? a ¦ t ¦ ? R, a and R depending on ? and that the local energy of nonstatic solutions decays as ¦ t ¦ → ∞. More refined results on energy decay are also given and the existence of wave operators is established, considering a perturbed equation E(x) ?u?t + ∑j = 1n Aj?u?xj = 0, where ¦ E(x) ? I ¦ = O(¦ x ¦?1 ? ?) at infinity.  相似文献   

8.
For parabolic initial boundary value problems various results such as limt ↓ 0{(?ut6x)(0, t)(?uα?x)(0, t)} = 1, where u satisfies ?u?t = a(u)(?2u?x2), 0 < x < 1, 0 < t ? T, u(x, 0) = 0, u(0, t) = |1(t), 0 < t ? T, u(1, t) = |2(t), 0 < t ? T, uαsatisfies (?uα?t) = α(?2uα?x2), 0 < x < 1, 0 < t ? T, uα(x, 0) = 0, uα(0, t) = |1(t), 0 < t ? T, uα(1, t) = |2(t), 0 < t ? T, and α = a(0), are demonstrated via the maximum principle and potential theoretic estimates.  相似文献   

9.
We study the time optimal control of the system x?1 = x1?1(x1 , x2) + u1(t) g1(x1), x?2 = x2?2(x1, x2) + u2(t)g2(x2), where x1 is the size of the population of one species, x2 is the population size of the second species, ?1 and ?2 are the fractional growth rates of the respective species, g1 and g2 are nowhere vanishing functions of class C1(0, + ∞), and the control u(t) = (u1(t), u2(t)) takes on values in a closed rectangle. The functions ?1 and ?2 are chosen to represent prey-predator, competitive, and symbiotic interactions.We show, for the various interactions, that a time optimal control, if it exists, must be “bang-bang,” and give sufficient conditions for the controllability, and for the existence, of time optimal controls of the above system.  相似文献   

10.
The integral transform F(z) = ∝0z (f′(t))α(g(t)t)β dt, where α and β are real, of pairs of special analytic functions f(z) = z + ···, g(z) = z + ···, univalent in the open unit disc Δ is studied. The transform and our results extend some recent results due to Shirakova.  相似文献   

11.
This paper presents sufficient conditions for the existence of a nonnegative and stable equilibrium point of a dynamical system of Volterra type, (1) (ddt) xi(t) = ?xi(t)[fi(x1(t),…, xn(t)) ? qi], i = 1,…, n, for every q = (q1,…, qn)T?Rn. Results of a nonlinear complementarity problem are applied to obtain the conditions. System (1) has a nonnegative and stable equilibrium point if (i) f(x) = (f1(x),…,fn(x))T is a continuous and differentiable M-function and it satisfies a certain surjectivity property, or (ii), f(x) is continuous and strongly monotone on R+0n.  相似文献   

12.
A spectral representation for the self-adjoint Schrödinger operator H = ?Δ + V(x), x? R3, is obtained, where V(x) is a long-range potential: V(x) = O(¦ x ¦?(12)), grad V(x) = O(¦ x ¦?(32)), ΛV(x) = O(¦ x s?) (δ > 0), Λ being the Laplace-Beltrami operator on the unit sphere Ω. Namely, we shall construct a unitary operator F from PL2(R3) onto L2((0, ∞); L2(Ω)), P being the orthogonal projection onto the absolutely continuous subspace for H, such that for any Borel function α(λ),
(α(H)(Pf,g)=0 (α(λ)(Ff)(λ),(Fg)(λ))L2(ω) dλ
.  相似文献   

13.
In this paper, the problem of phase reconstruction from magnitude of multidimensional band-limited functions is considered. It is shown that any irreducible band-limited function f(z1…,zn), zi ? C, i=1, …, n, is uniquely determined from the magnitude of f(x1…,xn): | f(x1…,xn)|, xi ? R, i=1,…, n, except for (1) linear shifts: i(α1z1+…+αn2n+β), β, αi?R, i=1,…, n; and (2) conjugation: f1(z11,…,zn1).  相似文献   

14.
Numerical approximation of the solution of the Cauchy problem for the linear parabolic partial differential equation is considered. The problem: (p(x)ux)x ? q(x)u = p(x)ut, 0 < x < 1,0 < t? T; u(0, t) = ?1(t), 0 < t ? T; u(1,t) = ?2(t), 0 < t ? T; p(0) ux(0, t) = g(t), 0 < t0 ? t ? T, is ill-posed in the sense of Hadamard. Complex variable and Dirichlet series techniques are used to establish Hölder continuous dependence of the solution upon the data under the additional assumption of a known uniform bound for ¦ u(x, t)¦ when 0 ? x ? 1 and 0 ? t ? T. Numerical results are obtained for the problem where the data ?1, ?2 and g are known only approximately.  相似文献   

15.
In this paper the integrals fmv(τ) = ∝0exp[?(t + τ)]tv(ln t)m(t + τ)?1 dt andgmv(τ) = ∝0exp[? ¦ ? τ ¦]tv(ln t)m(t ? τ)?1 dt are investigated for positive real values of the variable τ. Here, m is a nonnegative integer, v is a complex variable with Re(v) > ?1. Both integrals are related to the complex integral Φ(z) = ∝0exp[?(t ? z)]t?γ(ln t)m(t ? z)?1dt with 0 ? Re(γ) < 1, the behavior of which is analyzed in detail. The results are applied to obtain asymptotic representations for fmn(τ) and gmn(τ), m and n both nonnegative integers, near τ = 0. The latter integrals play a role in the study of the equations of neutron transport and radiative transfer.  相似文献   

16.
Consider an elliptic sesquilinear form defined on V × V by J[u, v] = ∫Ωajk?u?xk\?t6v?xj + ak?u?xkv? + αju\?t6v?xj + auv?dx, where V is a closed subspace of H1(Ω) which contains C0(Ω), Ω is a bounded Lipschitz domain in Rn, ajk, ak, αj, a ? L(Ω), and Re ajkζkζj ? κ > 0 for all ζ?Cn with ¦ζ¦ = 1. Let L be the operator with largest domain satisfying J[u, v] = (Lu, v) for all υ∈V. Then L + λI is a maximal accretive operator in L2(Ω) for λ a sufficiently large real number. It is proved that (L + λI)12 is a bounded operator from V to L2(Ω) provided mild regularity of the coefficients is assumed. In addition it is shown that if the coefficients depend differentiably on a parameter t in an appropriate sense, then the corresponding square root operators also depend differentiably on t. The latter result is new even when the forms J are hermitian.  相似文献   

17.
The author discusses the best approximate solution of the functional differential equation x′(t) = F(t, x(t), x(h(t))), 0 < t < l satisfying the initial condition x(0) = x0, where x(t) is an n-dimensional real vector. He shows that, under certain conditions, the above initial value problem has a unique solution y(t) and a unique best approximate solution p?k(t) of degree k (cf. [1]) for a given positive integer k. Furthermore, sup0?t?l ¦ p?k(t) ? y(t)¦ → 0 as k → ∞, where ¦ · ¦ is any norm in Rn.  相似文献   

18.
In this paper we study the existence, uniqueness, and regularity of the solutions for the Cauchy problem for the evolution equation ut + (f (u))x ? uxxt = g(x, t), (1) where u = u(x, t), x is in (0, 1), 0 ? t ? T, T is an arbitrary positive real number,f(s)?C1R, and g(x, t)?L(0, T; L2(0, 1)). We prove the existence and uniqueness of the weak solutions for (1) using the Galerkin method and a compactness argument such as that of J. L. Lions. We obtain regular solutions using eigenfunctions of the one-dimensional Laplace operator as a basis in the Galerkin method.  相似文献   

19.
A theory of scattering for the time dependent evolution equations dudt = iHj(t)u, j = 0, 1 (1) is developed. The wave operators are defined in terms of the evolution operators Uj(t, s), which govern (1). The scattering operator remains unitary. Sufficient conditions for existence and completeness of the wave operators are obtained; these are the main results. General properties, such as the chain rule and various intertwining relations, are also established. Applications include potential scattering (H0(t) = ?Δ, Δ denoting the Laplacian, and H1(t) = ?Δ + q(t, ·)) and scattering for second-order differential operators with coefficients constant in the spatial variable (Hj(t) = ∑m, k = 1n amk(j)(t)(?2?xm ?xk) + bj(t) for j = 0, 1).  相似文献   

20.
Galerkin's method with appropriate discretization in time is considered for approximating the solution of the nonlinear integro-differential equation ut(x, t) = ∝0t a(t ? τ) ??x σ(ux(x, τ)) dτ + f(x, t), 0 < x < 1, 0 < t < T.An error estimate in a suitable norm will be derived for the difference u ? uh between the exact solution u and the approximant uh. It turns out that the rate of convergence of uh to u as h → 0 is optimal. This result was confirmed by the numerical experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号