首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
We consider liquid metal flow in a square duct with electrically insulating walls under the influence of a magnetic point dipole using three-dimensional direct numerical simulations with a finite-difference method. The dipole acts as a magnetic obstacle. The Lorentz force on the magnet is sensitive to the velocity distribution that is influenced by the magnetic field. The flow transformation by an inhomogeneous local magnetic field is essential for obtaining velocity information from the measured forces. In this paper we present a numerical simulation of a spatially developing flow in a duct with laminar inflow and periodic boundary conditions. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
We consider propagation of electromagnetic waves in magnetic dipole and gravitational fields proceeding in accordance with the nonlinear vacuum electrodynamics laws. We derive formulas describing the effect of nonlinear electrodynamic lensing of electromagnetic waves in the magnetic dipole field. We show that rotation of the magnetic dipole moment about an axis noncoincident with this moment leads to a nonlinear electrodynamic modulation of the electromagnetic radiation intensity by frequencies that are multiples of the dipole rotation frequency. __________ Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 150, No. 1, pp. 85–94, January, 2007.  相似文献   

3.
We study magnetohydrodynamic flow of a liquid metal in a straight duct. The magnetic field is produced by an exterior magnetic dipole. This basic configuration is of fundamental interest for Lorentz force velocimetry (LFV), where the Lorentz force opposing the relative motion of conducting medium and magnetic field is measured to determine the flow velocity. The Lorentz force acts in equal strength but opposite direction on the flow as well as on the dipole. We are interested in the dependence of the velocity on the flow rate and on strength of the magnetic field as well as on geometric parameters such as distance and position of the dipole relative to the duct. To this end, we perform numerical simulations with an accurate finite-difference method in the limit of small magnetic Reynolds number, whereby the induced magnetic field is assumed to be small compared with the external applied field. The hydrodynamic Reynolds number is also assumed to be small so that the flow remains laminar. The simulations allow us to quantify the magnetic obstacle effect as a potential complication for local flow measurement with LFV. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Asymptotic formulas are derived for calculating the far-zone field inside a layered medium induced by a vertical magnetic dipole located on the surface of a horizontally homogeneous layered Earth with a three-dimensional nonhomogeneity. The asymptotic solution is compared with the exact solution. The far-zone dipole field is simulated for the model of a horizontally homogeneous layered earth with a three-dimensional nonhomogeneity. The simulation results show that the 3D-nonhomogeneity is easily detected from electromagnetic measurements with an artificial dipole source on the Earth’s surface.  相似文献   

5.
We show that both rigid and nonrigid dipoles can be trapped by an uniform external magnetic field in classical mechanics. The trapped states of the dipole present a nontrivial example of classical bound states embedded in a continuum (BSEC) that can be treated as analogues of quantum BSECs. For example, the classical motion of the dipole is confined to a finite region in space although there are no classical turning points. We also examine the quantum motion of the dipole in a magnetic field and show that for the most natural choices of the parameters, no quantum BSEC solutions exist. The possibilities of experimental investigations of BSECs are discussed. Deceased. Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 117, No. 2, pp. 189–205, November, 1998.  相似文献   

6.
The paper addresses the problem of a conducting rectangular bar of square cross-section which is moving with constant velocity in the field of an arbitrarily oriented magnetic dipole. The braking Lorentz force on the bar is obtained by FEM and compared with the analytical solution for a moving infinite plate in the field of a magnetic dipole [2]. The computation of the induced currents requires solution of a Laplace equation with mixed boundary conditions for the electric potential inside the moving bar. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
The motion of charged particles in the Earth’s magnetic field has been of interest to mathematicians and physicists in connection with the study of the polar aurora and cosmic rays. In 1907, Norwegian mathematician Stromer gave the mathematical formulation of this problem. It became the problem of great importance with the discovery of the Van Allen radiation. As is known, the Earth’s magnetic field can be considered approximately as a superposition of dipole and uniform magnetic fields, and the dipole’s magnetic moment is either parallel or antiparallel to the induction of the uniform field. Thus, the problem concerning the dynamics of the charged particle in the magnetic field of the Earth is reduced to that of charged particle dynamics in the composed field. The paper is devoted to the construction and investigation of the allowed regions in a superposition of dipole and uniform magnetic fields for positive values of Stormer’s constant γ and the same orientation of magnetic moment and uniform field.  相似文献   

8.
The generation of vortical structures by a strong magnetic dipole field in a liquid metal duct flow is studied by means of three-dimensional direct numerical simulations. The dipole is considered as the paradigm for a magnetic obstacle which will deviate the streamlines due to Lorentz forces which act on the fluid elements. Our model uses the quasi-static approximation applicable in the limit of small magnetic Reynolds numbers. The analysis covers the stationary flow regime at smaller flow Reynolds numbers Re as well as the fully time-dependent regimes at higher values with a turbulent flow in the wake of the magnetic obstacle. We present a systematic study of these two basic flow regimes on Re and the Hartmann number Ha, a measure of the strength of the magnetic dipole field. Furthermore, three orientations of the dipole are compared, the streamwise, spanwise and wall-normal ones. The most efficient generation of turbulence at a fixed distance above the duct occurs for the spanwise orientation in which we can observe the formation of Hartmann layers at the top plate. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
The motion of a conductor in a magnetic field induces eddy currents whose interaction with the field produces Lorentz forces opposing the motion. One can determine the velocity of the conductor from the force on the magnet system since the latter is equal but opposite to the Lorentz force on the conductor. This contactless method is known as Lorentz force velocimetry (LFV). We study an idealized configuration of LFV, i.e. a rotating solid cylinder interacting with a point dipole. The understanding of parameter influences in this setup can be helpful for more realistic configurations. We use a purely kinematic approach appropriate for low magnetic Reynolds numbers. Numerical results for small and large distances between dipole and cylinder have been obtained with the commercial software COMSOL Multiphysics. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Of concern in this paper is an investigation of biomagnetic flow of a non-Newtonian viscoelastic fluid over a stretching sheet under the influence of an applied magnetic field generated owing to the presence of a magnetic dipole. The viscoelasticity of the fluid is characterised by Walter’s B fluid model. The applied magnetic field has been considered to be sufficiently strong to saturate the ferrofluid. The magnetization of the fluid is considered to vary linearly with temperature as well as the magnetic field intensity. The theoretical treatment of the physical problem consists of reducing it to solving a system of non-linear coupled differential equations that involve six parameters, which are solved by developing a finite difference technique. The velocity profile, the skin-friction, the wall pressure and the rate of heat transfer at the sheet are computed for a specific situation. The study shows that the fluid velocity increases as the rate of heat transfer decreases, while the local skin-friction and the wall pressure increase as the magnetic field strength is increased. It is also revealed that fluid viscoelasticity has an enhancing effect on the local skin-friction. The study will have an important bearing on magnetic drug targeting and separation of red cells as well as on the control of blood flow during surgery.  相似文献   

11.
The metric tensor of the effective pseudo-Riemannian space–time for an electromagnetic wave propagating in the magnetic dipole field and the gravitational field of a neutron star is obtained within a parameterized post-Maxwellian vacuum electrodynamics. The angles of the nonlinear electrodynamic and gravitational ray bending for electromagnetic waves propagating in the magnetic equatorial plane of the star are calculated based on an analysis of isotropic geodesics of this space. We show that for all nonlinear theories whose post-Maxwellian parameters do not coincide, the velocity of the electromagnetic signal propagation in external fields and the rays along which these signals propagate depend on the polarization of the electromagnetic waves. The difference of the source-to-detector propagation time of these signals for two principal polarization states is calculated.  相似文献   

12.
We show that in 2+1 dimensions, the Dirac equation for a neutral fermion possessing electric and magnetic dipole moments in an external electromagnetic field reduces to the Dirac equation for a charged fermion in a external field characterized by a certain 3-pseudo-vector potential. The effective charge of the neutral fermion is determined by its dipole moments. The effects of coupling electric and magnetic moments of the neutral fermion to the external electromagnetic field seem to be inseparable in physical experiments of any type. We find an exact solution of the Dirac equation for a massive neutral fermion with electric and magnetic dipole moments in a external plane-wave electromagnetic field. We derive expressions for the fermionic vacuum current induced by neutral fermions in the presence of external electromagnetic fields.  相似文献   

13.
The flow of a heated ferrofluid over a linearly stretching sheet is studied in the pres- ence of an applied magnetic field due to a magnetic dipole. It is assumed that the applied magnetic field is sufficiently strong to saturate the ferrofluid and the variation of magnetization with temperature can be approximated by a non linear function of temperature difference. By introducing appropriate non dimensional variables the problem is described by a coupled and non linear system of ordinary differential equations with its boundary conditions which is solved numerically by applying an efficient numerical technique based on the common finite difference method. The obtained results are presented graphically for different values of the parameters entering into the problem under consideration and the dependence of the flow field from these parameters is discussed. A comparative study, with a similar problem which has already been solved and documented in literature, is also made wherever necessary, emphasizing the impor- tance of the non-linear variation of magnetization with temperature. Emphasis is also given in the obtained results for Prandtl number equal to 21 and critical exponent = 0.368 which are important and interesting in Biomagnetic Fluid Dynamics.  相似文献   

14.
The flow of a heated ferrofluid over a linearly stretching sheet is studied in the pres- ence of an applied magnetic field due to a magnetic dipole. It is assumed that the applied magnetic field is sufficiently strong to saturate the ferrofluid and the variation of magnetization with temperature can be approximated by a non linear function of temperature difference. By introducing appropriate non dimensional variables the problem is described by a coupled and non linear system of ordinary differential equations with its boundary conditions which is solved numerically by applying an efficient numerical technique based on the common finite difference method. The obtained results are presented graphically for different values of the parameters entering into the problem under consideration and the dependence of the flow field from these parameters is discussed. A comparative study, with a similar problem which has already been solved and documented in literature, is also made wherever necessary, emphasizing the impor- tance of the non-linear variation of magnetization with temperature. Emphasis is also given in the obtained results for Prandtl number equal to 21 and critical exponent = 0.368 which are important and interesting in Biomagnetic Fluid Dynamics.  相似文献   

15.
Th electromagnetic field produced by a magnetic dipole in thepresence of a perfectly conducting cone of arbitrary cross-sectionis determined. The solution is used to find out how a currenton the cone travelling towards the apex is reflected. Some valuesof the reflection coefficient are calculated. In particular,it is shown that there is a sort of resonance with the reflectionincreasing significantly as the cone approaches a plane.  相似文献   

16.
The interaction between a massive neutral fermion with a static (spin) magnetic dipole moment and an external electromagnetic field is described by the Dirac–Pauli equation. Exact solutions of this equation are obtained along with the corresponding energy spectrum for an axially symmetric external magnetic field and for some centrally symmetric electric fields. It is shown that the spin–orbital interaction of a neutral fermion with a magnetic moment determines both the characteristic properties of the quantum states and the fermion energy spectrum. It is found that (1) the discrete energy spectrum of a neutral fermion depends on the projection of the fermion spin on a certain quantization axis, (2) the ground energy level of a fermion in these electric fields as well as the energy levels of all bound states with a fixed value of the quantum number characterizing the projection of the fermion spin in the electric field E = er is degenerate and the degeneration order is countably infinite, and (3) the energy spectra of neutral fermions and antifermions with spin magnetic moments are symmetric in centrally symmetric fields. Bound states of a neutral fermion with a magnetic moment in an external electric field do exist even if the Dirac–Pauli equation does not explicitly contain the term with the fermion mass. In addition, in centrally symmetric electric fields, there exist a countably infinite set of pairs of isolated charge-conjugate zero-energy solutions of the Dirac–Pauli equation.  相似文献   

17.
A method is developed for calculating the electromagnetic field of a magnetic dipole in a quasilayered two-dimensional medium. The quasi-three-dimensional problem is reduced to a two-dimensional problem for the Fourier-transformed electromagnetic field. An equivalent system of integral equations on the layer boundaries is obtained. This research was partially supported by the State Scientific-Technical Program “Future Information Technologies” (grant No. 0201.06.010) and the Interuniversity Scientific Program “Russian Universities: Basic Research.” Translated from Chislennye Metody v Matematicheskoi Fizike, Moscow State University, pp. 94–110, 1998.  相似文献   

18.
The electromagnetic drag force on a point dipole near a moving conductor caused by the induced electric currents is investigated by numerical and analytical computations. Our focus is on prototypical configurations for Lorentz force velocimetry, i.e. velocity measurement from the electromagnetic drag force on the dipole. We examine the particular cases of conducting infinite bars of square or round cross-section, which are moving with constant velocity in the field of arbitrary oriented magnetic dipole. In addition, we study the laminar liquid-metal flow in a square duct. The motion of the conductor is prescribed. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
The bioelectric current dipole model is important both theoretically and computationally in the study of electrical activity in the brain and stomach due to the resemblance of the shape of these two organs to an ellipsoid. To calculate the magnetic field B due to a dipole in an ellipsoid, one must evaluate truncated series expansions involving ellipsoidal harmonics , which are products of Lamé functions. In this article, we extend a strictly analytic model (G. Dassios and F. Kariotou, J. Math. Phys. 44 (2003), 220–241), where B was computed from an ellipsoidal harmonic expansion of order 2. The present derivations show how the field can be evaluated to arbitrary order using numerical procedures for evaluating the roots of Lamé polynomials of degree 5 or higher. This can be accomplished using an optimization technique for solving nonlinear systems of equations, which allows one to acquire an understanding of the truncation error associated with the harmonic series expansion used for the calculation. Funding was provided by the National Institute of Health, Grant No. 1RO1 DK 58697 and by the Veterans’ Affairs Research Service.  相似文献   

20.
A circular cylinder is at rest in a compressible fluid witha given circulation K'. At time t=0 the cylinder is made tomove with low Mach number along a straight line perpendicularto its axis. A modified matching argument is used to describethe sound field induced by the lifting body. The velocity potentialin the sound field can be represented, to leading order, interms of a moving line dipole aligned along the direction ofmotion together with a transverse dipole sheet that extendsfrom the starting location of the centre of the cylinder toits current location. The next-order term is that of a movingline source. The line dipole accounts for the motion of thecylinder. The dipole sheet represents the sound field due tothe circulatory motion. If the circulation is constant, thenso is the strength of the dipole sheet and the time dependencearises from the changing length of the layer. In a more realisticcase, where vorticity is shed to form a wake behind the movingbody, there is a corresponding change in the circulation andin the strength of the evolving dipole sheet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号