首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 992 毫秒
1.
吴宏伟 《计算数学》2009,31(2):137-150
广义KPP(Kolmogorov-Petrovskii-Piskunov)方程是一个积分微分方程.为了要研究其数值解,我们首先将该方程转化为一个非线性双曲型方程,然后构造了一个线性化的差分格式,得到了差分格式解的存在唯一性,利用能量不等式证明了差分格式二阶收敛性和关于初值的无条件稳定性,数值结果验证了本文提出的方法.  相似文献   

2.
非交换微分在讨论数学物理中的偏微分方程时起着十分重要的作用.最近,作者利用一个具体的非交换外微分建立了一种求差分微分方程拉克斯对的方法,由此检验了该方程的可积性.本文给出了讨论全差分方程的对应理论.另外还讨论了一个格子形变的KdV(LMKdV)方程,并求得了它的拉克斯对.  相似文献   

3.
泛函微分方程周期解的存在性问题是重要而困难的。文[1—3]分别用Kaplan—Yorke方法研究了含一个滞量的微分差分方程的周期解问题。文[4]用Kaplan-Yorke方法研究了含二个滞量的微分差分方程周期解的存在性问题。本文研究微分差分方程  相似文献   

4.
利用经典李对称的方法对广义变系数Kdv方程进行研究,利用这种方法得到了该方程的一个新的精确解,这种方法的基本思路是通过对称约化将原来较难求解的偏微分方程转化为较易求解的常微分方程进行求解.实例证明这种方法具有一般性,适合于求一大类变系数的非线性演化方程.  相似文献   

5.
研究了具有允许的亚纯解的复差分方程的形式以及系数的级与解的级两者的关系,得到了两个结果.将复微分方程中一些结果推广至复差分方程.  相似文献   

6.
mKdV方程的对称与群不变解   总被引:1,自引:0,他引:1  
主要考虑mKdV方程的一些简单对称及其构成的李代数,并利用对称约化的方法将mKdV方程化为常微分方程,从而得到该方程的群不变解,这是对该方程群不变解的进一步扩展.  相似文献   

7.
本文中我们考虑一类二阶非线性常微分方程的边值问题的迎风差分格式.我们运用奇异摄动方法构造了该迎风差分方程解的渐近近似,并利用指数二分性理论证明了有一个低阶方程其解是该迎风方程式的在边界外的一个良好近似.我们还构造了校正项,使校正项与低阶方程的解之和是一个渐近近似.最后一些数值例子用于显示本文方法的应用.  相似文献   

8.
几类非线性差分方程的对称和精确解   总被引:1,自引:1,他引:0  
本文将微分方程的Lie变换群方法推广到差分方程,给出了三类非线性差分方程的不变变换,利用这种变换由差分方程的平凡解得到非平凡的单参数解族。  相似文献   

9.
研究一类微分-差分方程组的对称和等价群变换.采取内禀的无穷小算子方法,给出了方程组的内禀对称和等价群变换.为结合抽象Lie代数结构,给方程完全分类提供了理论基础.  相似文献   

10.
利用李雅普诺夫函数和新的比较原理讨论了脉冲差分方程的两度量稳定性问题.  相似文献   

11.
A scalar complex ordinary differential equation can be considered as two coupled real partial differential equations, along with the constraint of the Cauchy–Riemann equations, which constitute a system of four equations for two unknown real functions of two real variables. It is shown that the resulting system possesses those real Lie symmetries that are obtained by splitting each complex Lie symmetry of the given complex ordinary differential equation. Further, if we restrict the complex function to be of a single real variable, then the complex ordinary differential equation yields a coupled system of two ordinary differential equations and their invariance can be obtained in a non-trivial way from the invariance of the restricted complex differential equation. Also, the use of a complex Lie symmetry reduces the order of the complex ordinary differential equation (restricted complex ordinary differential equation) by one, which in turn yields a reduction in the order by one of the system of partial differential equations (system of ordinary differential equations). In this paper, for simplicity, we investigate the case of scalar second-order ordinary differential equations. As a consequence, we obtain an extension of the Lie table for second-order equations with two symmetries.  相似文献   

12.
热方程的非古典势对称群与不变解   总被引:1,自引:1,他引:0  
主要研究了热方程与波方程的非古典势对称群生成元及相应的群不变解.研究表明对于守恒形式的偏微分方程,可通过其伴随系统求得的非古典势对称群生成元来构造其艋式解.这些显式解不能由方程本身的Lie对称群生成元或Lie-Backlund对称群生成元构造得到.  相似文献   

13.
We investigate and concentrate on new infinitesimal generators of Lie symmetries for an extended (2+ 1)-dimensional Calogero-Bogoyavlenskii-Schif (eCBS) equation using the commutator table which results in a system of nonlinear ordinary differential equations (ODEs) which can be manually solved. Through two stages of Lie symmetry reductions, the eCBS equation is reduced to non-solvable nonlinear ODEs using different combinations of optimal Lie vectors. Using the integration method and the Riccati and Bernoulli equation methods, we investigate new analytical solutions to those ODEs. Back substituting to the original variables generates new solutions to the eCBS equation. These results are simulated through three- and two-dimensional plots.  相似文献   

14.
We completely solve the equivalence problem for Euler-Bernoulli equation using Lie symmetry analysis. We show that the quotient of the symmetry Lie algebra of the Bernoulli equation by the infinite-dimensional Lie algebra spanned by solution symmetries is a representation of one of the following Lie algebras: 2A1, A1A2, 3A1, or A3,3⊕A1. Each quotient symmetry Lie algebra determines an equivalence class of Euler-Bernoulli equations. Save for the generic case corresponding to arbitrary lineal mass density and flexural rigidity, we characterize the elements of each class by giving a determined set of differential equations satisfied by physical parameters (lineal mass density and flexural rigidity). For each class, we provide a simple representative and we explicitly construct transformations that maps a class member to its representative. The maximally symmetric class described by the four-dimensional quotient symmetry Lie algebra A3,3⊕A1 corresponds to Euler-Bernoulli equations homeomorphic to the uniform one (constant lineal mass density and flexural rigidity). We rigorously derive some non-trivial and non-uniform Euler-Bernoulli equations reducible to the uniform unit beam. Our models extend and emphasize the symmetry flavor of Gottlieb's iso-spectral beams [H.P.W. Gottlieb, Isospectral Euler-Bernoulli beam with continuous density and rigidity functions, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 413 (1987) 235-250].  相似文献   

15.
Given a class F of differential equations, the symmetry classification problem is to determine for each member f ∈ F the structure of its Lie symmetry group Gf or, equivalently, of its Lie symmetry algebra. The components of the symmetry vector fields of the Lie algebra are solutions of an associated overdetermined "defining system" of differential equations. The usual computer classification method which applies a sequence of total derivative operators and eliminations to this associated system often fails on problems of interest due to the excessive size of expressions generated in intermediate computations. We provide an alternative classification method which exploits the knowledge of an equivalence group G preserving the class. A noncommutative differential elimination procedure due to Lemaire, Reid, and Zhang, where each step of the procedure is invariant under G, can be applied and an existence and uniqueness theorem for the output used to classify the structure of symmetry groups for each f ∈ F. The method is applied to a class of nonlinear diffusion convection equations vx = u, vt = B(u) ux - K(u) which is invariant under a large but easily determined equivalence group G. In this example the complexity of the calculations is much reduced by the use of G-invariant differential operators.  相似文献   

16.
17.
We utilize the Lie-Tressé linearization method to obtain linearizing point transformations of certain autonomous nonlinear second-order ordinary differential equations contained in the Painlevé-Gambier classification. These point transformations are constructed using the Lie point symmetry generators admitted by the underlying Painlevé-Gambier equations. It is also shown that those Painlevé-Gambier equations which have a few Lie point symmetries and hence are not linearizable by this method can be integrated by a quadrature. Moreover, by making use of the partial Lagrangian approach we obtain time dependent and time independent first integrals for these Painlevé-Gambier equations which have not been reported in the earlier literature. A comparison of the results obtained in this paper is made with the ones obtained using the generalized Sundman linearization method.  相似文献   

18.
We develop new computational algorithms, based on the method of equivariant moving frames, for classifying the differential invariants of Lie symmetry pseudo-groups of differential equations and analyzing the structure of the induced differential invariant algebra. The Korteweg-deVries (KdV) and Kadomtsev-Petviashvili (KP) equations serve to illustrate examples. In particular, we deduce the first complete classification of the differential invariants and their syzygies of the KP symmetry pseudo-group.  相似文献   

19.
The Cartan equivalence method is used to find out if a given equation has a nontrivial Lie group of point symmetries. In particular, we compute invariants that permit one to recognize equations with a three-dimensional symmetry group. An effective method to transform the Lie system (the system of partial differential equations to be satisfied by the infinitesimal point symmetries) into a formally integrable form is given. For equations with a three-dimensional symmetry group, the formally integrable form of the Lie system is found explicitly. Translated fromMatematicheskie Zametki, Vol. 60, No. 1, pp. 75–91, July, 1996.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号