首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 312 毫秒
1.
In this paper our aim is to present an elementary proof of an identity of Calogero concerning the zeros of Bessel functions of the first kind. Moreover, by using our elementary approach we present a new identity for the zeros of Bessel functions of the first kind, which in particular reduces to some other new identities. We also show that our method can be applied for the zeros of other special functions, like Struve functions of the first kind, and modified Bessel functions of the second kind.  相似文献   

2.
In this paper, we extend some known elementary trigonometric inequalities, and their hyperbolic analogues to Bessel and modified Bessel functions of the first kind. In order to prove our main results, we present some monotonicity and convexity properties of some functions involving Bessel and modified Bessel functions of the first kind. We also deduce some Turán and Lazarević-type inequalities for the confluent hypergeometric functions.  相似文献   

3.
This paper presents 2 new classes of the Bessel functions on a compact domain [0,T] as generalized‐tempered Bessel functions of the first‐ and second‐kind which are denoted by GTBFs‐1 and GTBFs‐2. Two special cases corresponding to the GTBFs‐1 and GTBFs‐2 are considered. We first prove that these functions are as the solutions of 2 linear differential operators and then show that these operators are self‐adjoint on suitable domains. Some interesting properties of these sets of functions such as orthogonality, completeness, fractional derivatives and integrals, recursive relations, asymptotic formulas, and so on are proved in detail. Finally, these functions are performed to approximate some functions and also to solve 3 practical differential equations of fractionalorders.  相似文献   

4.
It is shown in the Weyl limit‐point case that system of root functions of the non‐self‐adjoint Bessel operator and its perturbation Sturm–Liouville operator form a complete system in the Hilbert space. Furthermore, asymptotic behavior of the eigenvalues of the non‐self‐adjoint Bessel operators is investigated, and it is proved that system of root functions form a Bari basis in the same Hilbert space. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
In this article, a numerical technique is presented for the approximate solution of the Bagley–Torvik equation, which is a class of fractional differential equations. The basic idea of this method is to obtain the approximate solution in a generalized form of the Bessel functions of the first kind. For this purpose, by using the collocation points, the matrix operations and a generalization of the Bessel functions of the first kind, this technique transforms the Bagley–Torvik equation into a system of the linear algebraic equations. Hence, by solving this system, the unknown Bessel coefficients are computed. The reliability and efficiency of the proposed scheme are demonstrated by some numerical examples. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Propositions about the nonexistence of complex zeros of the functions Hμ(z)=Jμ(z)+zJμ(z),Jμ(z),Jμ(z), where Jμ(z) and Jμ(z) are the first two derivatives of the Bessel functions Jμ(z), for μ in general complex are proved. Bounds for the purely imaginary zeros of the above functions assuming their existence are given. Thus for the range of values for which these bounds are violated there are no purely imaginary zeros of the above functions. Finally, some known results from previous work are generalized in the present paper.  相似文献   

7.
The intrinsic properties, including logarithmic convexity (concavity), of the modified Bessel functions of the first kind and some other related functions are obtained. Several inequalities involving functions under discussion are established.  相似文献   

8.
We present new formulae (the Slevinsky–Safouhi formulae I and II) for the analytical development of higher order derivatives. These formulae, which are analytic and exact, represent the kth derivative as a discrete sum of only k+1 terms. Involved in the expression for the kth derivative are coefficients of the terms in the summation. These coefficients can be computed recursively and they are not subject to any computational instability. As examples of applications, we develop higher order derivatives of Legendre functions, Chebyshev polynomials of the first kind, Hermite functions and Bessel functions. We also show the general classes of functions to which our new formula is applicable and show how our formula can be applied to certain classes of differential equations. We also presented an application of the formulae of higher order derivatives combined with extrapolation methods in the numerical integration of spherical Bessel integral functions.  相似文献   

9.
It is shown in the limit‐circle case that system of root functions of the non‐self‐adjoint maximal dissipative (accumulative) Bessel operator and its perturbation Sturm–Liouville operator form a complete system in the Hilbert space. Furthermore, asymptotic behavior of the eigenvalues of the maximal dissipative (accumulative) Bessel operators is investigated, and it is proved that system of root functions form a basis (Riesz and Bari bases) in the same Hilbert space. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
ABSTRACT

Schlömilch's series is named after the German mathematician Oscar Xavier Schlömilch, who derived it in 1857 as a Fourier series type expansion in terms of the Bessel function of the first kind. However, except for Bessel functions, here we consider an expansion in terms of Struve functions or Bessel and Struve integrals as well. The method for obtaining a sum of Schlömilch's series in terms of the Bessel or Struve functions is based on the summation of trigonometric series, which can be represented in terms of the Riemann zeta and related functions of reciprocal powers and in certain cases can be brought in the closed form, meaning that the infinite series are represented by finite sums. By using Krylov's method we obtain the convergence acceleration of the trigonometric series.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号