首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
The most famous open problem involving domination in graphs is Vizing's conjecture which states the domination number of the Cartesian product of any two graphs is at least as large as the product of their domination numbers. We investigate a similar problem for paired-domination, and obtain a lower bound in terms of product of domination number of one factor and 3-packing of the other factor. Some results are obtained by applying a new graph invariant called rainbow domination.  相似文献   

2.
In this paper we characterize the convex dominating sets in the composition and Cartesian product of two connected graphs. The concepts of clique dominating set and clique domination number of a graph are defined. It is shown that the convex domination number of a composition G[H] of two non-complete connected graphs G and H is equal to the clique domination number of G. The convex domination number of the Cartesian product of two connected graphs is related to the convex domination numbers of the graphs involved.  相似文献   

3.
Vizing's conjecture from 1968 asserts that the domination number of the Cartesian product of two graphs is at least as large as the product of their domination numbers. In this paper we survey the approaches to this central conjecture from domination theory and give some new results along the way. For instance, several new properties of a minimal counterexample to the conjecture are obtained and a lower bound for the domination number is proved for products of claw‐free graphs with arbitrary graphs. Open problems, questions and related conjectures are discussed throughout the paper. © 2011 Wiley Periodicals, Inc. J Graph Theory 69: 46–76, 2012  相似文献   

4.
Let Y be a subset of real numbers. A Y-dominating function of a graph G=(V,E) is a function f:VY such that for all vertices vV, where NG[v]={v}∪{u|(u,v)∈E}. Let for any subset S of V and let f(V) be the weight of f. The Y-domination problem is to find a Y-dominating function of minimum weight for a graph G=(V,E). In this paper, we study the variations of Y-domination such as {k}-domination, k-tuple domination, signed domination, and minus domination for some classes of graphs. We give formulas to compute the {k}-domination, k-tuple domination, signed domination, and minus domination numbers of paths, cycles, n-fans, n-wheels, n-pans, and n-suns. Besides, we present a unified approach to these four problems on strongly chordal graphs. Notice that trees, block graphs, interval graphs, and directed path graphs are subclasses of strongly chordal graphs. This paper also gives complexity results for the problems on doubly chordal graphs, dually chordal graphs, bipartite planar graphs, chordal bipartite graphs, and planar graphs.  相似文献   

5.
MacGillivary and Seyffarth [G. MacGillivray, K. Seyffarth, Domination numbers of planar graphs, J. Graph Theory 22 (1996) 213–229] proved that planar graphs of diameter two have domination number at most three. Goddard and Henning [W. Goddard, M.A. Henning, Domination in planar graphs with small diameter, J. Graph Theory 40 (2002) 1–25] showed that there is a unique planar graph of diameter two with domination number three. It follows that the total domination number of a planar graph of diameter two is at most three. In this paper, we consider the problem of characterizing planar graphs with diameter two and total domination number three. We say that a graph satisfies the domination-cycle property if there is some minimum dominating set of the graph not contained in any induced 5-cycle. We characterize the planar graphs with diameter two and total domination number three that satisfy the domination-cycle property and show that there are exactly thirty-four such planar graphs.  相似文献   

6.
L. Paoluzzi and B. Zimmermann constructed a family of compact orientable hyperbolic 3-manifolds with totally geodesic boundary, and classified them up to homeomorphism. Our main purpose is to determine the canonical decompositions of these manifolds. Using the result, we can obtain an alternative proof of the classification theorem of these manifolds and determine their isometry groups. We also determine their unknotting tunnels. Some of these manifolds are related to certain spatial graphs, so-called Suzukis Brunnian graphs. The properties of these manifolds enable us to obtain those of the graphs. Moreover, we give an affirmative answer to Kinoshitas problem concerning these graphs. In the Appendix, we calculate the volume of these manifolds.  相似文献   

7.
In this paper we present a characterization of connected graphs of order 2n with domination numbern. Using this class of graphs, we determine an infinite class of graphs with the property that the domination number of the product of any two is precisely the product of the domination numbers.  相似文献   

8.
Generalized Petersen graphs are certain graphs consisting of one quadratic factor. For these graphs some numerical invariants concerning the domination are studied, namely the domatic number , the total domatic number and the -ply domatic number for and . Some exact values and some inequalities are stated.  相似文献   

9.
A sharp lower bound for the domination number and the total domination number of the direct product of finitely many complete graphs is given: . Sharpness is established in the case when the factors are large enough in comparison to the number of factors. The main result gives a lower bound for the domination (and the total domination) number of the direct product of two arbitrary graphs: γ(G×H)≥γ(G)+γ(H)−1. Infinite families of graphs that attain the bound are presented. For these graphs it also holds that γt(G×H)=γ(G)+γ(H)−1. Some additional parallels with the total domination number are made.  相似文献   

10.
Thomassen proposed a well-known conjecture: every 4-connected line graph is hamiltonian. In this note, we show that Thomassens conjecture is equivalent to the statement that the shortness coefficient of the class of all 4-connected line graphs is one and the statement that the shortness coefficient of the class of all 4-connected claw-free graphs is one respectively.Research partially supported by the fund of the basic research of Beijing Institute of Technology, by the fund of Natural Science of Jiangxi Province and by grant No. LN00A056 of the Czech Ministry of Education  相似文献   

11.
A set S of vertices in a graph G is a total dominating set if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set of G is the total domination number of G. Two vertices of G are said to be dotted (identified) if they are combined to form one vertex whose open neighborhood is the union of their neighborhoods minus themselves. We note that dotting any pair of vertices cannot increase the total domination number. Further we show it can decrease the total domination number by at most 2. A graph is total domination dot-stable if dotting any pair of adjacent vertices leaves the total domination number unchanged. We characterize the total domination dot-stable graphs and give a sharp upper bound on their total domination number. We also characterize the graphs attaining this bound.  相似文献   

12.
In this paper, we present new upper bounds for the global domination and Roman domination numbers and also prove that these results are asymptotically best possible. Moreover, we give upper bounds for the restrained domination and total restrained domination numbers for large classes of graphs, and show that, for almost all graphs, the restrained domination number is equal to the domination number, and the total restrained domination number is equal to the total domination number. A number of open problems are posed.  相似文献   

13.
Let Γ t ? (G) be upper minus total domination number of G. In this paper, We establish an upper bound of the upper minus total domination number of a regular graph G and characterize the extremal graphs attaining the bound. Thus, we answer an open problem by Yan, Yang and Shan  相似文献   

14.
In this note, we give a finite forbidden subgraph characterization of the connected graphs for which any non-trivial connected induced subgraph has the property that the connected domination number is at most the total domination number. This question is motivated by the fact that any connected dominating set of size at least 2 is in particular a total dominating set. It turns out that in this characterization, the total domination number can equivalently be substituted by the upper total domination number, the paired-domination number and the upper paired-domination number, respectively. Another equivalent condition is given in terms of structural domination.  相似文献   

15.
Zip product was recently used in a note establishing the crossing number of the Cartesian product K1,nPm. In this article, we further investigate the relations of this graph operation with the crossing numbers of graphs. First, we use a refining of the embedding method bound for crossing numbers to weaken the connectivity condition under which the crossing number is additive for the zip product. Next, we deduce a general theorem for bounding the crossing numbers of (capped) Cartesian product of graphs with trees, which yields exact results under certain symmetry conditions. We apply this theorem to obtain exact and approximate results on crossing numbers of Cartesian product of various graphs with trees. © 2007 Wiley Periodicals, Inc. J Graph Theory 56: 287–300, 2007  相似文献   

16.
In this article, we use edge weighting functions on dominating sets to show that if we impose a regularity condition on a graph, then upper bounds on both the upper domination number and the upper total domination number can be greatly improved. More precisely, we prove that for if G is a k‐regular graph on n vertices, then the upper domination number of G is at most , and the upper total domination number of G is at most . Furthermore, we show that these bounds are sharp and characterize the infinite families of graphs that achieve equality in both these bounds.  相似文献   

17.
A function f:V(G)→{+1,0,-1} defined on the vertices of a graph G is a minus total dominating function if the sum of its function values over any open neighborhood is at least 1. The minus total domination number of G is the minimum weight of a minus total dominating function on G. By simply changing “{+1,0,-1}” in the above definition to “{+1,-1}”, we can define the signed total dominating function and the signed total domination number of G. In this paper we present a sharp lower bound on the signed total domination number for a k-partite graph, which results in a short proof of a result due to Kang et al. on the minus total domination number for a k-partite graph. We also give sharp lower bounds on and for triangle-free graphs and characterize the extremal graphs achieving these bounds.  相似文献   

18.
In this paper we introduce the concept of fair reception of a graph which is related to its domination number. We prove that all graphs G with a fair reception of size γ(G) satisfy Vizing's conjecture on the domination number of Cartesian product graphs, by which we extend the well‐known result of Barcalkin and German concerning decomposable graphs. Combining our concept with a result of Aharoni, Berger and Ziv, we obtain an alternative proof of the theorem of Aharoni and Szabó that chordal graphs satisfy Vizing's conjecture. A new infinite family of graphs that satisfy Vizing's conjecture is also presented. © 2009 Wiley Periodicals, Inc. J Graph Theory 61: 45‐54, 2009  相似文献   

19.
The distinguishing chromatic number of a graph, G, is the minimum number of colours required to properly colour the vertices of G so that the only automorphism of G that preserves colours is the identity. There are many classes of graphs for which the distinguishing chromatic number has been studied, including Cartesian products of complete graphs (Jerebic and Klav?ar, 2010). In this paper we determine the distinguishing chromatic number of the complement of the Cartesian product of complete graphs, providing an interesting class of graphs, some of which have distinguishing chromatic number equal to the chromatic number, and others for which the difference between the distinguishing chromatic number and chromatic number can be arbitrarily large.  相似文献   

20.
This paper studies a variation of domination in graphs called rainbow domination. For a positive integer k, a k-rainbow dominating function of a graph G is a function f from V(G) to the set of all subsets of {1,2,…,k} such that for any vertex v with f(v)=0? we have ∪uNG(v)f(u)={1,2,…,k}. The 1-rainbow domination is the same as the ordinary domination. The k-rainbow domination problem is to determine the k-rainbow domination number of a graph G, that is the minimum value of ∑vV(G)|f(v)| where f runs over all k-rainbow dominating functions of G. In this paper, we prove that the k-rainbow domination problem is NP-complete even when restricted to chordal graphs or bipartite graphs. We then give a linear-time algorithm for the k-rainbow domination problem on trees. For a given tree T, we also determine the smallest k such that .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号