首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
In this paper we present an extension of the proximal point algorithm with Bregman distances to solve constrained minimization problems with quasiconvex and convex objective function on Hadamard manifolds. The proposed algorithm is a modified and extended version of the one presented in Papa Quiroz and Oliveira (J Convex Anal 16(1): 49–69, 2009). An advantage of the proposed algorithm, for the nonconvex case, is that in each iteration the algorithm only needs to find a stationary point of the proximal function and not a global minimum. For that reason, from the computational point of view, the proposed algorithm is more practical than the earlier proximal method. Another advantage, for the convex case, is that using minimal condition on the problem data as well as on the proximal parameters we get the same convergence results of the Euclidean proximal algorithm using Bregman distances.  相似文献   

2.
Abstract

We present an interior proximal method for solving constrained nonconvex optimization problems where the objective function is given by the difference of two convex function (DC function). To this end, we consider a linearized proximal method with a proximal distance as regularization. Convergence analysis of particular choices of the proximal distance as second-order homogeneous proximal distances and Bregman distances are considered. Finally, some academic numerical results are presented for a constrained DC problem and generalized Fermat–Weber location problems.  相似文献   

3.
We discuss here generalized proximal point methods applied to variational inequality problems. These methods differ from the classical point method in that a so-called Bregman distance substitutes for the Euclidean distance and forces the sequence generated by the algorithm to remain in the interior of the feasible region, assumed to be nonempty. We consider here the case in which this region is a polyhedron (which includes linear and nonlinear programming, monotone linear complementarity problems, and also certain nonlinear complementarity problems), and present two alternatives to deal with linear equality constraints. We prove that the sequences generated by any of these alternatives, which in general are different, converge to the same point, namely the solution of the problem which is closest, in the sense of the Bregman distance, to the initial iterate, for a certain class of operators. This class consists essentially of point-to-point and differentiable operators such that their Jacobian matrices are positive semidefinite (not necessarily symmetric) and their kernels are constant in the feasible region and invariant through symmetrization. For these operators, the solution set of the problem is also a polyhedron. Thus, we extend a previous similar result which covered only linear operators with symmetric and positive-semidefinite matrices.  相似文献   

4.
A closed set of a Euclidean space is said to be Chebyshev if every point in the space has one and only one closest point in the set. Although the situation is not settled in infinite-dimensional Hilbert spaces, in 1932 Bunt showed that in Euclidean spaces a closed set is Chebyshev if and only if the set is convex. In this paper, from the more general perspective of Bregman distances, we show that if every point in the space has a unique nearest point in a closed set, then the set is convex. We provide two approaches: one is by nonsmooth analysis; the other by maximal monotone operator theory. Subdifferentiability properties of Bregman nearest distance functions are also given.  相似文献   

5.
We present an interior proximal method with Bregman distance, for solving the minimization problem with quasiconvex objective function under nonnegative constraints. The Bregman function is considered separable and zone coercive, and the zone is the interior of the positive orthant. Under the assumption that the solution set is nonempty and the objective function is continuously differentiable, we establish the well definedness of the sequence generated by our algorithm and obtain two important convergence results, and show in the main one that the sequence converges to a solution point of the problem when the regularization parameters go to zero.  相似文献   

6.
In 1960, Klee showed that a subset of a Euclidean space must be a singleton provided that each point in the space has a unique farthest point in the set. This classical result has received much attention; in fact, the Hilbert space version is a famous open problem. In this paper, we consider Klee sets from a new perspective. Rather than measuring distance induced by a norm, we focus on the case when distance is meant in the sense of Bregman, i.e., induced by a convex function. When the convex function has sufficiently nice properties, then–analogously to the Euclidean distance case–every Klee set must be a singleton. We provide two proofs of this result, based on Monotone Operator Theory and on Nonsmooth Analysis. The latter approach leads to results that complement the work by Hiriart-Urruty on the Euclidean case.  相似文献   

7.
Nonlinear Proximal Decomposition Method for Convex Programming   总被引:2,自引:0,他引:2  
In this paper, we propose a new decomposition method for solving convex programming problems with separable structure. The proposed method is based on the decomposition method proposed by Chen and Teboulle and the nonlinear proximal point algorithm using the Bregman function. An advantage of the proposed method is that, by a suitable choice of the Bregman function, each subproblem becomes essentially the unconstrained minimization of a finite-valued convex function. Under appropriate assumptions, the method is globally convergent to a solution of the problem.  相似文献   

8.
This paper is devoted to the study of strong convergence in inexact proximal like methods for finding zeroes of maximal monotone operators in Banach spaces. Convergence properties of proximal point methods in Banach spaces can be summarized as follows: if the operator have zeroes then the sequence of iterates is bounded and all its weak accumulation points are solutions. Whether or not the whole sequence converges weakly to a solution and which is the relation of the weak limit with the initial iterate are key questions. We present a hybrid proximal Bregman projection method, allowing for inexact solutions of the proximal subproblems, that guarantees strong convergence of the sequence to the closest solution, in the sense of the Bregman distance, to the initial iterate.  相似文献   

9.
《Optimization》2012,61(2):257-270
Abstract

In this paper we consider the minimization problem with constraints. We will show that if the set of constraints is a Riemannian manifold of nonpositive sectional curvature, and the objective function is convex in this manifold, then the proximal point method in Euclidean space is naturally extended to solve that class of problems. We will prove that the sequence generated by our method is well defined and converge to a minimizer point. In particular we show how tools of Riemannian geometry, more specifically the convex analysis in Riemannian manifolds, can be used to solve nonconvex constrained problem in Euclidean, space.  相似文献   

10.
We introduce a notion of variable quasi-Bregman monotone sequence which unifies the notion of variable metric quasi-Fejér monotone sequences and that of Bregman monotone sequences. The results are applied to analyze the asymptotic behavior of proximal iterations based on variable Bregman distance and of algorithms for solving convex feasibility problems in reflexive real Banach spaces.  相似文献   

11.
We compute constrained equilibria satisfying an optimality condition. Important examples include convex programming, saddle problems, noncooperative games, and variational inequalities. Under a monotonicity hypothesis we show that equilibrium solutions can be found via iterative convex minimization. In the main algorithm each stage of computation requires two proximal steps, possibly using Bregman functions. One step serves to predict the next point; the other helps to correct the new prediction. To enhance practical applicability we tolerate numerical errors. Research supported partly by the Norwegian Research Council, project: Quantec 111039/401.  相似文献   

12.
We make a unified analysis of interior proximal methods of solving convex second-order cone programming problems. These methods use a proximal distance with respect to second-order cones which can be produced with an appropriate closed proper univariate function in three ways. Under some mild conditions, the sequence generated is bounded with each limit point being a solution, and global rates of convergence estimates are obtained in terms of objective values. A class of regularized proximal distances is also constructed which can guarantee the global convergence of the sequence to an optimal solution. These results are illustrated with some examples. In addition, we also study the central paths associated with these distance-like functions, and for the linear SOCP we discuss their relations with the sequence generated by the interior proximal methods. From this, we obtain improved convergence results for the sequence for the interior proximal methods using a proximal distance continuous at the boundary of second-order cones.  相似文献   

13.
We present a method for finding common points of finitely many closed convex sets in Euclidean space. The Bregman extension of the classical method of cyclic orthogonal projections employs nonorthogonal projections induced by a convex Bregman function, whereas the Bauschke and Borwein method uses Bregman/Legendre functions. Our method works with generalized Bregman functions (B-functions) and inexact projections, which are easier to compute than the exact ones employed in other methods. We also discuss subgradient algorithms with Bregman projections.  相似文献   

14.
《Optimization》2012,61(1):3-17
Two inexact versions of a Bregman-function-based proximal method for finding a zero of a maximal monotone operator, suggested in [J. Eckstein (1998). Approximate iterations in Bregman-function-based proximal algorithms. Math. Programming, 83, 113–123; P. da Silva, J. Eckstein and C. Humes (2001). Rescaling and stepsize selection in proximal methods using separable generalized distances. SIAM J. Optim., 12, 238–261], are considered. For a wide class of Bregman functions, including the standard entropy kernel and all strongly convex Bregman functions, convergence of these methods is proved under an essentially weaker accuracy condition on the iterates than in the original papers.

Also the error criterion of a logarithmic–quadratic proximal method, developed in [A. Auslender, M. Teboulle and S. Ben-Tiba (1999). A logarithmic-quadratic proximal method for variational inequalities. Computational Optimization and Applications, 12, 31–40], is relaxed, and convergence results for the inexact version of the proximal method with entropy-like distance functions are described.

For the methods mentioned, like in [R.T. Rockafellar (1976). Monotone operators and the proximal point algorithm. SIAM J. Control Optim., 14, 877–898] for the classical proximal point algorithm, only summability of the sequence of error vector norms is required.  相似文献   

15.
We introduce a regularized equilibrium problem in Banach spaces, involving generalized Bregman functions. For this regularized problem, we establish the existence and uniqueness of solutions. These regularizations yield a proximal-like method for solving equilibrium problems in Banach spaces. We prove that the proximal sequence is an asymptotically solving sequence when the dual space is uniformly convex. Moreover, we prove that all weak accumulation points are solutions if the equilibrium function is lower semicontinuous in its first variable. We prove, under additional assumptions, that the proximal sequence converges weakly to a solution.  相似文献   

16.
1. IntroductionThe quadratic programming (QP) problem is the most simple one in nonlinear pro-gramming and plays a very important role in optimization theory and applications.It is well known that matriX splitting teChniques are widely used for solving large-scalelinear system of equations very successfully. These algorithms generate an infinite sequence,in contrast to the direct algorithms which terminate in a finite number of steps. However,iterative algorithms are considerable simpler tha…  相似文献   

17.
唐国吉  汪星 《数学学报》2016,59(2):187-198
把王宜举等人[Modified extragradient—type method for variational inequali—ties and verification of the existence of solutions,J.Optim.Theory Appl.,2003,119:167-183]在欧氏空间上求解变分不等式的一个超梯度型方法推广到Banach空间.变分不等式中的算子不要求是一致连续的,其主要优点在于不管变分不等式是否有解,算法都是可执行的.此外,变分不等式的可解性可以通过算法产生的序列的性态来刻画.在适当的条件下,算法产生的序列强收敛于变分不等式的一个解,这是Bregman距离意义下离初始点最近的解.本文的主要结果推广和改善了近来文献中的相应结果.  相似文献   

18.
The iterative primal-dual method of Bregman for solving linearly constrained convex programming problems, which utilizes nonorthogonal projections onto hyperplanes, is represented in a compact form, and a complete proof of convergence is given for an almost cyclic control of the method. Based on this, a new algorithm for solving interval convex programming problems, i.e., problems of the form minf(x), subject to γ≤Ax≤δ, is proposed. For a certain family of functionsf(x), which includes the norm ∥x∥ and thex logx entropy function, convergence is proved. The present row-action method is particularly suitable for handling problems in which the matrixA is large (or huge) and sparse.  相似文献   

19.
Considering a recently proposed proximal point method for equilibrium problems, we construct an augmented Lagrangian method for solving the same problem in reflexive Banach spaces with cone constraints generating a strongly convergent sequence to a certain solution of the problem. This is an inexact hybrid method meaning that at a certain iterate, a solution of an unconstrained equilibrium problem is found, allowing a proper error bound, followed by a Bregman projection of the initial iterate onto the intersection of two appropriate halfspaces. Assuming a set of reasonable hypotheses, we provide a full convergence analysis.  相似文献   

20.
In this paper, we consider a reverse convex programming problem constrained by a convex set and a reverse convex set, which is defined by the complement of the interior of a compact convex set X. We propose an inner approximation method to solve the problem in the case where X is not necessarily a polytope. The algorithm utilizes an inner approximation of X by a sequence of polytopes to generate relaxed problems. It is shown that every accumulation point of the sequence of optimal solutions of the relaxed problems is an optimal solution of the original problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号