首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study evaluated the effectiveness of teacher‐scientist partnerships for increasing the use. of inquiry in precollege classrooms. It assessed the influence of the Teaching About Energy Through Inquiry Institutes for middle and high school teachers and energy scientists on participants' attitudes about science and science education, use of inquiry instructional techniques, and student attitudes about their classroom environments. Participant surveys, institute and classroom observations, lesson plans, and interviews indicated increased appreciation for inquiry, greater confidence in teaching using inquiry, and greater use of inquiry in the classroom. Student surveys and classroom observations pointed to higher levels of student satisfaction and less friction among classmates during inquiry‐based investigations implemented after the institutes. Moreover, scientist partners reported increased familiarity with principles of science education and best teaching practice, which are essential skills and knowledge for disseminating results of scientific research to nonscientific audiences, as well as their own students. These results suggest that collaborations between teachers and research scientists can positively affect the environment for learning science in precollege and college classes. Successful collaborations are most likely to occur when equal status for teachers and scientists in the partnership is stressed and partners have the opportunity to explore inquiry‐based curricula together.  相似文献   

2.
High‐quality after‐school programs devoted to science have the potential to enhance students' science knowledge and attitudes, which may impact their decisions about pursuing science‐related careers. Because of the unique nature of these informal learning environments, an understanding of the relationships among aspects of students' content knowledge acquisition and attitudes toward science may aid in the development of effective science‐related interventions. We investigated the impact of a semester‐long after‐school intervention utilizing an inquiry‐based infectious diseases curriculum (designed for use after‐school) on 63 urban students' content knowledge and aspects of their attitudes toward science. Content knowledge increased 24.6% from pretest to posttest. Multiple regression analyses indicated suggested that the “self‐directed effort” subscale of the Simpson–Troost Attitude Questionnaire—Revised best predicted increases in students' science content knowledge. The construct “science is fun for me” served as a suppressor effect. These findings suggest that future after‐school programs focusing on aspects of attitudes toward science most closely associated with gains in content knowledge might improve students' enthusiasm and academic preparedness for additional science coursework by improving student attitudes toward their perceptions of their self‐directed effort.  相似文献   

3.
Many K–8 preservice teachers have not experienced learning mathematics in a standards‐based classroom. This article describes a mathematics content course designed to provide preservice teachers experiences in learning mathematics that will help build a solid foundation for a standards‐based methods course. The content course focuses on developing preservice teachers' mathematical knowledge, as well as helping them realize what it means to learn mathematics that is taught using the pedagogy in the Principles and Standards for School Mathematics ( National Council of Teachers of Mathematics, 2000 ). Furthermore, findings are presented from a study on this course that describe students' pre‐ and postcourse beliefs, attitudes, and perceptions of what it means to learn and teach mathematics. These findings provide evidence that the students in the study are beginning to understand what is meant by a standards‐based classroom. Data were collected from surveys and interviews. Quotes from the students who aspire to be elementary teachers are used throughout the article to support the points.  相似文献   

4.
With the introduction of single‐sex classroom settings in coeducational public schools, there is an ongoing debate as to whether single‐sex education may reduce or reinforce traditional stereotypes and gender roles. In this article we present findings from a study that investigated the extent to which mathematics is perceived as a gendered domain among adolescent students enrolled in single‐sex classes and coeducational classes. Further we analyzed the relationships between student characteristics, class‐type, and teacher variables on students' perceptions of gender in mathematics. Findings from this study challenge the traditional view of mathematics as a male domain. Female participants more frequently considered mathematics to be a female domain than the male participants. Male participants, on the other hand, typically did not stereotype the mathematics as a gendered domain. Results from this study do not indicate, for girls at least, that participation in single‐sex classes results in a greater propensity to stereotype mathematics as a gendered domain than would be the case in coeducational classes. This study contributes to the evolving discourse and understanding of adolescents' gendered attitudes and beliefs towards mathematics—especially in light of stereotyped assertions that have a bearing on efforts to promote the learning of mathematics and science.  相似文献   

5.
The study examined relationships among key domains of science instruction with English language learning (ELL) students based on teachers' perceptions of their classroom practices (i.e., what they think they do) and actual classroom practices (i.e., what they are observed doing). The four domains under investigation included: (1) teachers' knowledge of science content; (2) teaching practices to support scientific understanding; (3) teaching practices to support scientific inquiry; and (4) teaching practices to support English language development during science instruction. The study involved 38 third‐grade teachers participating in the first‐year implementation of a professional development intervention aimed at improving science and literacy achievement of ELL students in urban elementary schools. Based on teachers' self‐reports, practices for understanding were related to practices for inquiry and practices for English language development. Based on classroom observations in the fall and spring, practices for understanding were related to practices for inquiry, practices for English language development, and teacher knowledge of science content. However, we found a weak to non‐existent relationship between teachers' self‐reports and observations of their practices.  相似文献   

6.
The main purpose of this quantitative study was to examine the degree to which a three‐week intervention in an urban high‐needs high school science classroom would influence students’ (n = 51) interest, utility value, content knowledge, and intentions for future study in chemistry. The intervention consisted of an authentic, inquiry‐based chemistry project where students worked cooperatively to investigate core chemistry concepts and connect them to real‐world consumer products and careers in manufacturing that required chemistry knowledge. Findings indicated that students improved their chemistry knowledge, found greater relevance for chemistry, and intend to take more chemistry in the future. Interest in chemistry did not statistically significantly increase as a result of the intervention; however, students’ interest levels remained consistently moderate from pre‐test to post. This study adds to the current body of literature in three ways. First, the intervention showcased positive outcomes with students from an urban, high‐needs high school who lacked motivation and academic proficiency in science. Second, using an authentic, inquiry‐based utility value intervention is a viable alternative to previous successful interventions that involved writing tasks. Finally, the study was the result of a high school teacher's advanced training in research where important evaluation skills were cultivated and advanced.  相似文献   

7.
This study explored if a weeklong science camp changed Louisiana African‐American high school students' perception of science. A semi‐structured survey was used before and after the camp to determine the changes in science attitudes and career choices. Among the perceived benefits were parental involvement, increased science academic ability, and deepened scientific knowledge. These perceived benefits influenced the identities that students constructed for themselves in relation to science in their lives. Students who reported doing well in school science courses believed that science was more relevant to their lives. Female students who cited doing well in science reported less parental involvement in their schoolwork than males. This study draws attention to gender differences in science and to designing informal science learning experiences for African‐American high school students that can change attitudes toward career choices in science‐related fields.  相似文献   

8.
The purpose of this study was to understand the mathematical content knowledge new teachers have both before and after taking a mathematics methods course in the NYCTF program. Further, the purpose was to understand the attitudes toward mathematics and concepts of self‐efficacy that Teaching Fellows had over the course of the semester. The sample included 42 new Teaching Fellows who were given a mathematics content test, attitudes toward mathematics questionnaire, and teaching self‐efficacy questionnaire at the beginning and end of the semester. Further, the teachers kept teaching and learning journals. Findings revealed a significant increase in both mathematical content knowledge and positive attitudes toward mathematics. Additionally, Teaching Fellows were found to have positive attitudes and high self‐efficacy at the end of the semester, and relationships were found between attitudes and self‐efficacy. Finally, Teaching Fellows generally found that classroom management was the biggest issue in their teaching, and that problem solving and numeracy were the most important topics addressed in their learning. Future studies should address self‐efficacy differences between preservice and in‐service teachers and the effects of alternative certification teacher knowledge, attitudes toward mathematics, and self‐efficacy on students in the classroom.  相似文献   

9.
In Florida, recent legislative changes have granted community colleges the ability to offer baccalaureate degrees in education, frequently to non‐traditional students. Based on information obtained from the literature covering preservice teachers' math knowledge, teachers' efficacy beliefs about math, and high‐stakes mathematics testing, a study examined a population of preservice teachers in a new Florida teacher preparation program. The research investigated relationships surrounding non‐traditional preservice teachers' characteristics such as: ages, high‐stakes math failures, lower division mathematics history, and math methods course performance, in relation to their efficacy beliefs about mathematics. Results revealed that preservice teachers' ages, lower division mathematics history, and math methods course performance, did have a significant relationship with their math efficacy beliefs, as measured by the Mathematics Teaching Efficacy Beliefs Instrument (MTEBI); the variable of high‐stakes math failures did not. Additionally, a multiple regression model including the aforementioned variables did predict preservice teachers' MTEBI scores, but did not generalize to the greater population. The findings from this study can assist new teacher preparation programs in isolating variables that identify preservice teachers who are at risk for poor mathematical attitudes; can posit avenues for fostering positive math beliefs in preservice teachers; and can recommend further research in this area.  相似文献   

10.
The particulate nature of matter is identified in science education standards as one of the fundamental concepts that students should understand at the middle school level. However, science education research in indicates that secondary school students have difficulties understanding the structure of matter. The purpose of the study is to describe how engaging in an extended project‐based unit developed urban middle school students' understanding of the particulate nature of matter. Multiple sources of data were collected, including pre‐ and posttests, interviews, students' drawings, and video recordings of classroom activities. One teacher and her five classes were chosen for an indepth study. Analyses of data show that after experiencing a series of learning activities the majority of students acquired substantial content knowledge. Additionally, the finding indicates that students' understanding of the particulate nature of matter improved over time and that they retained and even reinforced their understanding after applying the concept. Discussions of the design features of curriculum and the teacher's use of multiple representations might provide insights into the effectiveness of learning activities in the unit.  相似文献   

11.
Body‐based activities have the potential to support mathematics learning, but we know little about the impact they have in the classroom. This study compares high school geometry students learning through either body‐based or analogous non‐body‐based activities over the course of a two‐week unit on similarity. Pre‐ and post‐tests revealed that while students in both conditions showed gains in content area comprehension over the course of the study, the body‐based condition showed significantly greater gains. Further, there were differences in the language students used to describe the learning activities at the end of the unit that may have contributed to the differences in learning gains. The students in the body‐based condition included more mathematical and nonmathematical details in their recollections. Additionally, students in the body‐based condition were more likely to recall their experiences from a first‐person perspective, while students in the control condition were more likely to use a third‐person perspective.  相似文献   

12.
This article focuses on the impact a collaborative project between university graduate fellows and K‐12 classroom teachers had on improved pedagogy in the classroom and in the future at the university. Nine teams participated in a yearlong professional development project to improve pedagogy and communication skills of the participants. This study shows that the participants, the fellows and the K‐12 teacher partners, made changes in planning, implementation, and even motivation for using inquiry‐based methods in their classroom. External observations of the teams further support the individuals' claims of improved pedagogy using inquiry and impact on student conceptual understanding. The Horizon Classroom Observation instrument was used for these observations. The teams showed an overall increase in scores, as well as overall effective and exemplarily implementation of their planning. The program design, the implementation, and the results of this three‐year study will be elaborated in this article.  相似文献   

13.
This exploratory case study investigates relationships between use of an inquiry‐based instructional style and student scores on standardized multiple‐choice tests. The study takes the form of a case study of physical science classes taught by one of the authors over a span of four school years. The first 2 years were taught using traditional instruction with low levels of inquiry (non‐inquiry group), and the last 2 years of classes were taught by inquiry methods. Students' physical science test scores, achievement data, and attendance data were examined and compared across both instructional styles. Results suggest that for this teacher the use of an inquiry‐based teaching style did not dramatically alter students' overall achievement, as measured by North Carolina's standardized test in physical science. However, inquiry‐based instruction had other positive effects, such as a dramatic improvement in student participation and higher classroom grades earned by students. In additional inquiry‐based instruction resulted in more uniform achievement than did traditional instruction, both in classroom measures and in more objective standardized test measures.  相似文献   

14.
Autobiographies are an effective tool for assessing students' predispositions toward science and mathematics content and identifying any changes in attitude over time. The purpose of this study was to analyze autobiographies of students enrolled in elementary education methods classes to determine the kinds of K‐12 and college content course experiences affecting their perceptions of mathematics or science. Special attention was given to recollections of events that had positive or negative effects on students' interest in and attitudes toward science or mathematics, their confidence in these areas, and transitions in attitude throughout their experiences. Ninety‐eight autobiographies were collected and analyzed, revealing attitudes that were generally more positive than expected, five major emergent themes, and important information about when and why transitions in attitudes occurred.  相似文献   

15.
Parental involvement in schools has been documented as a positive influence on children's achievement, attendance, attitudes, behavior, and graduation rate, regardless of cultural background, ethnicity, and socioeconomic status ( National Parents and Teachers Association, 1998 ). Unfortunately, it has been difficult in today's world of working parents to get them actively involved in science, mathematics, and technology programs and to maintain this involvement in upper‐elementary and secondary schools. This study reports on the Science: Parents, Activities, and Literature project's attempt to get parents productively involved in their children's hands‐on science program. The results illustrate that (a) parents will become involved and they find their involvement a positive experience, (b) teachers appreciate parents' contributions as an instructional resource, and (c) students perceive the increased parental involvement positively.  相似文献   

16.
Similarity is a fundamental concept in the middle grades. In this study, we applied Vergnaud's theory of conceptual fields to answer the following questions: What concepts‐in‐action and theorems‐in‐action about similarity surfaced when students worked in a novel task that required them to enlarge a puzzle piece? How did students use geometric and multiplicative reasoning at the same time in order to construct similar figures? We found that students used concepts of scaling and proportional reasoning, as well as the concept of circle and theorems about similar triangles, in their work on the problem. Students relied not only on visual perception, but also on numeric reasoning. Moreover, students' use of multiplicative and proportional concepts supported their geometric constructions. Knowledge of the concepts and ideas that students have available when working on a task about similarity can inform instruction by helping to ground formal introduction of new concepts in students' informal prior experiences and knowledge.  相似文献   

17.
This study investigates the way collaborative learning that occurs primarily outside the classroom affects college students' understanding of science. Collaborative learning is particularly important for the increasing number of nontraditional students who have limited time available for study groups and other peer learning activities occurring outside of class time. Using a national study of 4,644 college students of various academic majors, multiple linear regression was used to identify variables that enhance science learning. Time spent in peer learning settings, such as teaching science to peers and discussing science with peers, were the strongest predictors of understanding science; moreover, this finding was consistent even for nontraditional students who reported less frequency of engagement in such activities. The study suggests that science educators can enhance learning when they structure their courses to include peer learning that engages students with each other over science issues outside the classroom.  相似文献   

18.
Capitalizing on Emerging Technologies: A Case Study of Classroom Blogging   总被引:1,自引:0,他引:1  
The challenge many teachers face is how to incorporate new technology into their classrooms that strengthens classroom learning by capitalizing on students’ media literacies. Blogs, a new and innovative technological tool, can be used in math and science classrooms to support student learning by capitalizing on students’ interests and familiarity with on‐line communication. This study explores the emerging blogging practices of one high school mathematics teacher and his class to explore issues of intent, use, and perceived value. Data sources for this case included one year's worth of blog content, an interview with the facilitating teacher, and students ‘perceptions of classroom blogging practices. Findings indicate that (1) teachers’ intentions focused on creating additional forms of participation as well as increasing student exposure time with content; (2) blogs were used in a wide variety of ways that likely afforded particular benefits; and (3) both teacher and students perceived the greater investment to be worthwhile. The findings are used to critically consider claims made in the literature about the potential of blogging to effectively support classroom learning.  相似文献   

19.
As in the case of elementary mathematics, the instruction of high‐level mathematical concepts can often be sacrificed at the expense of a focus on algorithmic procedures. Computer‐based simulations can expand an undergraduate mathematics instructor's opportunity to explore high‐level mathematical concepts in an applied environment. This study describes one instructor's approach to incorporating simulations and classroom discussions in a differential equations course and the subsequent effects on student learning attitudes and outcomes. Students made modest gains in the area of conceptualizing and applying ideas regarding solutions to differential equations in this learning environment. Implications of the study include the identification of specific gains relative to computer‐mediated learning environments and recommendations for using simulations to support conceptual development.  相似文献   

20.
The purpose of this study was to compare teacher efficacy beliefs of secondary Biology I teachers whose students' mean scores on the statewide End‐of‐Instruction (EOI) Biology I test met or exceeded the state academic proficiency level (Proficient Group) to teacher efficacy beliefs of secondary Biology I teachers whose students' mean scores on the EOI Biology I test fell below the state academic proficiency level (Non‐proficient Group). The mean difference on the Personal Science Teaching Efficacy (PSTE) subscale scores between the two groups was not statistically significant. This indicates that personal science teaching efficacy was not statistically related to how a teacher s students scored on the EOI Biology I test. The mean difference on the Science Teaching Outcome Expectancy (STOE) subscale scores demonstrated a statistically significant difference between the science teaching outcome expectancy of the Non‐proficient Group and Proficient Group teachers. Proficient Group teachers had significantly higher STOE scores than teachers Non‐proficient Group teachers. This finding suggests that End‐of‐Instruction Biology I test scores were related to the expectations that a teacher held for his/her students to learn biology regardless of student home environment, availability of classroom materials, or student motivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号