首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Some inequalities for the Hadamard product and the Fan product of matrices   总被引:2,自引:0,他引:2  
If A and B are nonsingular M-matrices, a sharp lower bound on the smallest eigenvalue τ(AB) for the Fan product of A and B is given, and a sharp lower bound on τ(A°B-1) for the Hadamard product of A and B-1 is derived. In addition, we also give a sharp upper bound on the spectral radius ρ(A°B) for nonnegative matrices A and B.  相似文献   

2.
Let F(A) be the numerical range or the numerical radius of a square matrix A. Denote by A ° B the Schur product of two matrices A and B. Characterizations are given for mappings on square matrices satisfying F(A ° B) = F(?(A) ° ?(B)) for all matrices A and B. Analogous results are obtained for mappings on Hermitian matrices.  相似文献   

3.
For a square matrix A, let S(A) be an eigenvalue inclusion set such as the Gershgorin region, the Brauer region in terms of Cassini ovals, and the Ostrowski region. Characterization is obtained for maps Φ on n×n matrices satisfying S(Φ(A)-Φ(B))=S(A-B) for all matrices A and B. From these results, one can deduce the structure of additive or (real) linear maps satisfying S(A)=S(Φ(A)) for every matrix A.  相似文献   

4.
We prove the spectral radius inequality ρ(A1°A2°?°Ak)?ρ(A1A2?Ak) for nonnegative matrices using the ideas of Horn and Zhang. We obtain the inequality ‖A°B‖?ρ(ATB) for nonnegative matrices, which improves Schur’s classical inequality ‖A°B‖?‖A‖‖B‖, where ‖·‖ denotes the spectral norm. We also give counterexamples to two conjectures about the Hadamard product.  相似文献   

5.
For a square matrix A, let S(A) be an eigenvalue inclusion set such as the Gershgorin region, the union of Cassini ovals, and the Ostrowski’s set. Characterization is obtained for maps Φ on n×n matrices satisfying S(Φ(A)Φ(B))=S(AB) for all matrices A and B.  相似文献   

6.
In this paper, our main objective is to study the effect of appending/deleting a column/row on the shorted operators. It turns out that for matrices A and B for which the shorted operator S(A|B) exists, S(A1|B1) of the matrix A1=[A:a] with respect to the matrix B1=[B:b], when it exists, is obtained by appending a suitable column to S(A|B). Moreover, if S(A1|B1) exists, then S(A|B) exists and is obtained from S(A1|B1) by dropping its last column. In the process, we study the effect of appending/deleting a column/row on the space pre-order and the parallel sum of parallel summable matrices. Finally, we specialize to the case of and matrices and study the effect of bordering (by an additional column and a row) on the shorted operator. We conclude the paper with an application to Linear Models with singular dispersion structure.  相似文献   

7.
Two Hermitian matrices A,BMn(C) are said to be Hermitian-congruent if there exists a nonsingular Hermitian matrix CMn(C) such that B=CAC. In this paper, we give necessary and sufficient conditions for two nonsingular simultaneously unitarily diagonalizable Hermitian matrices A and B to be Hermitian-congruent. Moreover, when A and B are Hermitian-congruent, we describe the possible inertias of the Hermitian matrices C that carry the congruence. We also give necessary and sufficient conditions for any 2-by-2 nonsingular Hermitian matrices to be Hermitian-congruent. In both of the studied cases, we show that if A and B are real and Hermitian-congruent, then they are congruent by a real symmetric matrix. Finally we note that if A and B are 2-by-2 nonsingular real symmetric matrices having the same sign pattern, then there is always a real symmetric matrix C satisfying B=CAC. Moreover, if both matrices are positive, then C can be picked with arbitrary inertia.  相似文献   

8.
Let Mm,n(B) be the semimodule of all m×n Boolean matrices where B is the Boolean algebra with two elements. Let k be a positive integer such that 2?k?min(m,n). Let B(m,n,k) denote the subsemimodule of Mm,n(B) spanned by the set of all rank k matrices. We show that if T is a bijective linear mapping on B(m,n,k), then there exist permutation matrices P and Q such that T(A)=PAQ for all AB(m,n,k) or m=n and T(A)=PAtQ for all AB(m,n,k). This result follows from a more general theorem we prove concerning the structure of linear mappings on B(m,n,k) that preserve both the weight of each matrix and rank one matrices of weight k2. Here the weight of a Boolean matrix is the number of its nonzero entries.  相似文献   

9.
A sign pattern matrix is a matrix whose entries are from the set {+,-,0}. For a real matrix B, sgn(B) is the sign pattern matrix obtained by replacing each positive (respectively, negative, zero) entry of B by + (respectively, −, 0). For a sign pattern matrix A, the sign pattern class of A, denoted Q(A), is defined as {B:sgn(B)=A}. The minimum rank mr(A) (maximum rank MR(A)) of a sign pattern matrix A is the minimum (maximum) of the ranks of the real matrices in Q(A). Several results concerning sign patterns A that require almost unique rank, that is to say, the sign patterns A such that MR(A) = mr(A) + 1, are established and are extended to sign patterns A for which the spread is d=MR(A)-mr(A). A complete characterization of the sign patterns that require almost unique rank is obtained.  相似文献   

10.
We prove an inequality for the spectral radius of products of non-negative matrices conjectured by X. Zhan. We show that for all n×n non-negative matrices A and B, ρ(A°B)?ρ((A°A)(B°B))1/2?ρ(AB), in which ° represents the Hadamard product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号