首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the problem of when the sub-direct sum of two strictly diagonally dominant P-matrices is a strictly diagonally dominant P-matrix is studied. In particular, it is shown that the subdirect sum of overlapping principal submatrices of strictly diagonally dominant P-matrices is a strictly diagonally dominant P-matrix. It is also established that the 2-subdirect sum of two totally nonnegative matrices is a totally nonnegative matrix under some conditions. It is obtained that a partial totally nonnegative matrix, whose graph of the specified entries is a monotonically labeled 2-chordal graph, has a totally nonnegative completion. Finally, a positive answer to the question (IV) in Fallat and Johnson [Shaun M. Fallat, C.R. Johnson, J.R. Torregrosa, A.M. Urbano, P-matrix completions under weak symmetry assumptions, Linear Algebra Appl. 312 (2000) 73-91] is given for P0-matrices.  相似文献   

2.
A real matrix is called k-subtotally positive if the determinants of all its submatrices of order at most k are positive. We show that for an m × n matrix, only mn inequalities determine such class for every k, 1 ? k ? min(m,n). Spectral properties of square k-subtotally positive matrices are studied. Finally, completion problems for 2-subtotally positive matrices and their additive counterpart, the anti-Monge matrices, are investigated. Since totally positive matrices are 2-subtotally positive as well, the presented necessary conditions for this completion problem are also necessary conditions for totally positive matrices.  相似文献   

3.
For the first time, perturbation bounds including componentwise perturbation bounds for the block LU factorization have been provided by Dopico and Molera (2005) [5]. In this paper, componentwise error analysis is presented for computing the block LU factorization of nonsingular totally nonnegative matrices. We present a componentwise bound on the equivalent perturbation for the computed block LU factorization. Consequently, combining with the componentwise perturbation results we derive componentwise forward error bounds for the computed block factors.  相似文献   

4.
Every nonsingular totally positive m-banded matrix is shown to be the product of m totally positive one-banded matrices and, therefore, the limit of strictly m-banded totally positive matrices. This result is then extended to (bi)infinite m-banded totally positive matrices with linearly independent rows and columns. In the process, such matrices are shown to possess at least one diagonal whose principal sections are all nonzero. As a consequence, such matrices are seen to be approximable by strictly m-banded totally positive ones.  相似文献   

5.
Totally nonnegative matrices, i.e., matrices having all their minors nonnegative, and matrix intervals with respect to the checkerboard ordering are considered. It is proven that if the two bound matrices of such a matrix interval are nonsingular and totally nonnegative (and in addition all their zero minors are identical) then all matrices from this interval are also nonsingular and totally nonnegative (with identical zero minors).  相似文献   

6.
An l-invertible nonfinite totally positive matrix A is shown to have one and only one “main diagonal.” This means that exactly one diagonal of A has the property that all finite sections of A principal with respect to this diagonal are invertible and their inverses converge boundedly and entrywise to A-1. This is shown to imply restrictions on the possible shapes of such a matrix. In the proof, such a matrix is also shown to have an l-invertible LDU factorization. In addition, decay of the entries of such a matrix away from the main diagonal is demonstrated. It is also shown that a bounded sign-regular matrix carrying some bounded sequence to a uniformly alternating sequence must have all its columns in c0.  相似文献   

7.
For any given set S of n distinct positive numbers, we construct a symmetric n-by-n (strictly) totally positive matrix whose spectrum is S. Thus, in order to be the spectrum of an n-by-n totally positive matrix, it is necessary and sufficient that n numbers be positive and distinct.  相似文献   

8.
A class of sign‐symmetric P‐matrices including all nonsingular totally positive matrices and their inverses as well as tridiagonal nonsingular H‐matrices is presented and analyzed. These matrices present a bidiagonal decomposition that can be used to obtain algorithms to compute with high relative accuracy their singular values, eigenvalues, inverses, or their LDU factorization. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Unlike factorization theory of commutative semigroups which are well-studied, very little literature exists describing factorization properties in noncommutative semigroups. Perhaps the most ubiquitous noncommutative semigroups are semigroups of square matrices and this article investigates the factorization properties within certain subsemigroups of Mn(Z), the semigroup of n×n matrices with integer entries. Certain important invariants are calculated to give a sense of how unique or non-unique factorization is in each of these semigroups.  相似文献   

10.
The shift-and-invert method is very efficient in eigenvalue computations, in particular when interior eigenvalues are sought. This method involves solving linear systems of the form (AσI)z=b. The shift σ is variable, hence when a direct method is used to solve the linear system, the LU factorization of (AσI) needs to be computed for every shift change. We present two strategies that reduce the number of floating point operations performed in the LU factorization when the shift changes. Both methods perform first a preprocessing step that aims at eliminating parts of the matrix that are not affected by the diagonal change. This leads to about 43% and 50% flops savings respectively for the dense matrices.  相似文献   

11.
A determinantal identity, frequently used in the study of totally positive matrices, is extended, and then used to re-prove the well-known univariate knot insertion formula for B-splines. Also we introduce a class of matrices, intermediate between totally positive and strictly totally positive matrices. The determinantal identity is used to show any minor of such matrices is positive if and only if its diagonal entries are positive. Among others, this class of matrices includes B-splines collocation matrices and Hurwitz matrices.This author acknowledges a sabbatical stay at IBM T.J. Watson Research Center in 1990, which was supported by a DGICYT grant from Spain.  相似文献   

12.
In a totally real number field, every totally positive integral number is a finite sum of (additively) indecomposable totally positive integral numbers, and up to multiplication by totally positive units, there exist only finitely many indecomposables. In the paper it is shown that in quadratic fields all these numbers can be listed in a very efficient way by using the so-called intermediate convergents of a certain quadratic irrationality. The method can be viewed as a simple extension of the standard method of calculating the fundamental unit by using continued fractions. As an application it is shown that for instance in Z|√d| a number is decomposable if its norm is >d. It is remarkable that this bound does not depend on the size of the fundamental unit.  相似文献   

13.
Using Du’s characterization of the dual canonical basis of the coordinate ring O(GL(n,C)), we express all elements of this basis in terms of immanants. We then give a new factorization of permutations w avoiding the patterns 3412 and 4231, which in turn yields a factorization of the corresponding Kazhdan-Lusztig basis elements of the Hecke algebra Hn(q). Using the immanant and factorization results, we show that for every totally nonnegative immanant and its expansion with respect to the basis of Kazhdan-Lusztig immanants, the coefficient dw must be nonnegative when w avoids the patterns 3412 and 4231.  相似文献   

14.
A new “finite section” type theorem is used to show that the members of an interesting class of bounded totally positive matrices map l onto l if and only if their range contains a vector which alternates in sign and has coordinates bounded away from zero. The class of matrices studied contains all banded totally positive matrices, and thus all infinite spline collocation matrices. Connections to related work and extension to matrices which are not sign regular are indicated.  相似文献   

15.
An n-by-n real matrix A enjoys the “leading implies all” (LIA) property, if, whenever D   is a diagonal matrix such that A+DA+D has positive leading principal minors (PMs), all PMs of A are positive. Symmetric and Z-matrices are known to have this property. We give a new class of matrices (“mixed matrices”) that both unifies and generalizes these two classes and their special diagonal equivalences by also having the LIA property. “Nested implies all” (NIA) is also enjoyed by this new class.  相似文献   

16.
We propose to give positive answers to the open questions: is R(X,Y) strong S when R(X) is strong S? is R stably strong S (resp., universally catenary) when R[X] is strong S (resp., catenary)? in case R is obtained by a (T,I,D) construction. The importance of these results is due to the fact that this type of ring is the principal source of counterexamples. Moreover, we give an answer to the open questions: is RX1,…,Xn〉 residually Jaffard (resp., totally Jaffard) when R(X1,…,Xn) is ? We construct a three-dimensional local ring R such that R(X1,…,Xn) is totally Jaffard (and hence, residually Jaffard) whereas RX1,…,Xn〉 is not residually Jaffard (and hence, not totally Jaffard).  相似文献   

17.
Completion problem with partial correlation vines   总被引:1,自引:0,他引:1  
This paper extends the results in [D. Kurowicka, R.M. Cooke, A parametrization of positive definite matrices in terms of partial correlation vines, Linear Algebra Appl. 372 (2003) 225-251]. We show that a partial correlation vine represents a factorization of the determinant of the correlation matrix. We show that the graph of an incompletely specified correlation matrix is chordal if and only if it can be represented as an m-saturated incomplete vine, that is, an incomplete vine for which all edges corresponding to membership-descendents (m-descendents for short) of a specified edge are specified. This enables us to find the set of completions, and also the completion with maximal determinant for matrices corresponding to chordal graphs.  相似文献   

18.
A singular matrix A may have more than one LU factorizations. In this work the set of all LU factorizations of A is explicitly described when the lower triangular matrix L is nonsingular. To this purpose, a canonical form of A under left multiplication by unit lower triangular matrices is introduced. This canonical form allows us to characterize the matrices that have an LU factorization and to parametrize all possible LU factorizations. Formulae in terms of quotient of minors of A are presented for the entries of this canonical form.  相似文献   

19.
In many applications of cooperative game theory to economic allocation problems, such as river-, polluted river- and sequencing games, the game is totally positive (i.e., all dividends are nonnegative), and there is some ordering on the set of the players. A totally positive game has a nonempty core. In this paper we introduce constrained core solutions for totally positive games with ordered players which assign to every such a game a subset of the core. These solutions are based on the distribution of dividends taking into account the hierarchical ordering of the players. The Harsanyi constrained core of a totally positive game with ordered players is a subset of the core of the game and contains the Shapley value. For special orderings it coincides with the core or the Shapley value. The selectope constrained core is defined for acyclic orderings and yields a subset of the Harsanyi constrained core. We provide a characterization for both solutions.  相似文献   

20.
We characterize quasi-metrizable bispaces that admit only bicomplete quasimetrics by means of doubly primitive sequences, and deduce that if (X, S, T) is a quasi-metrizable bispace admitting only bicomplete quasi-metrics and either (X, S) or (X, T) is hereditarily Lindelöf, then (X, S ∨ T) is compact. We also give an example which shows that hereditary Lindelöfness cannot be omitted in the above result. Finally, we show that a quasi-pseudometrizable bispace (X, S, T) admits only totally bounded quasi-pseudometrics if and only if (X, S ∨ T) is compact, and deduce that a quasi-pseudometrizable topological space admits only totally bounded quasi-pseudometrics if and only if it is hereditarily compact and quasi-sober (equivalently, if and only if it admits a unique quasi-uniformity).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号