首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
We study the problem of allocating a limited quantity of a single manufacturing resource to produce a subset of possible part-types. Customer orders require one or more part-types. We assume that revenue is received for an order only if it is completely filled, and that set-up costs and order revenues dominate the variable costs of production. We present a heuristic for the solution of our problem, as well as families of cutting-planes for an integer programming formulation. Computational results on a set of random test problems indicate that the heuristic is quite effective in producing near optimal solutions. The cutting-planes appear to be quite useful in reducing the number of linear programming solutions required by branch-and-bound.  相似文献   

2.
We consider finite buffered queues where the arrival process is controlled by shutting down and restarting the arrival stream. In the absence of holding costs for items in the queue, the optimal (s,?S) policy can be characterised by relating the arrival control problem to a corresponding service control problem. With the inclusion of holding costs however, this characterisation is not valid and efficient numerical computation of the queue length probability distribution is necessary. We perform this computation by using a duality property which relates queue lengths in the controlled arrival system to a controlled service system. Numerical results which analyse the effect of setup and holding costs and the variability of the arrival process on the performance of the system are included.  相似文献   

3.
Inventory policies for joint remanufacturing and manufacturing have recently received much attention. Most efforts, though, were related to (optimal) policy structures and numerical optimization, rather than closed form expressions for calculating near optimal policy parameters. The focus of this paper is on the latter. We analyze an inventory system with unit product returns and demands where remanufacturing is the cheaper alternative for manufacturing. Manufacturing is also needed, however, since there are less returns than demands. The cost structure consists of setup costs, holding costs, and backorder costs. Manufacturing and remanufacturing orders have non-zero lead times. To control the system we use certain extensions of the familiar (s, Q) policy, called push and pull remanufacturing policies. For all policies we present simple, closed form formulae for approximating the optimal policy parameters under a cost minimization objective. In an extensive numerical study we show that the proposed formulae lead to near-optimal policy parameters.  相似文献   

4.
For the control of single machine and multiple part-types manufacturing systems, the prioritized hedging point (PHP) policy is often used. In this paper, the probability distribution of the system states under this control is analysed. Unlike the work by Shu and Perkins (2001), where the maximum production rates for all part-types are identical, we deal with the situation that the maximum production rates for various part-types are different from each other. For this situation, we obtain the independence property of the PHP policy, that is, the marginal probability density function of the production surplus of a specific part-type only relies on the hedging point of itself, but does not depend on the hedging points of other part-types. On the basis of this property, the problem of optimizing the hedging points of the PHP policy can be solved by dividing the single machine and multiple part-types system into a series of equivalent single machine and single part-type systems, the closed form of whose optimal hedging point is known and can be applied directly to optimize the hedging points of the PHP policy.  相似文献   

5.
In this paper we show how to exactly evaluate holding and shortage costs for a two-level inventory system with one warehouse and N different retailers. Lead-times (transportation times) are constant, and the retailers face different Poisson demand processes. All facilities apply continuous review (R, Q)-policies. We express the policy costs as a weighted mean of costs for one-for-one ordering policies.  相似文献   

6.
This paper is concerned with finding the optimal replenishment policy for an inventory model that minimizes the total expected discounted costs over an infinite planning horizon. The demand is assumed to be driven by a Brownian motion with drift and the holding costs (inventory and shortages) are assumed to take some general form. This generalizes the earlier work where holding costs were assumed linear. It turns out that problem of finding the optimal replenishment schedule reduces to the problem of solving a Quasi-Variational Inequality Problem (QVI). This QVI is then shown to lead to an (sS) policy, where s and S are determined uniquely as a solution of some algebraic equations.  相似文献   

7.

We consider optimal pricing for a two-station tandem queueing system with finite buffers, communication blocking, and price-sensitive customers whose arrivals form a homogeneous Poisson process. The service provider quotes prices to incoming customers using either a static or dynamic pricing scheme. There may also be a holding cost for each customer in the system. The objective is to maximize either the discounted profit over an infinite planning horizon or the long-run average profit of the provider. We show that there exists an optimal dynamic policy that exhibits a monotone structure, in which the quoted price is non-decreasing in the queue length at either station and is non-increasing if a customer moves from station 1 to 2, for both the discounted and long-run average problems under certain conditions on the holding costs. We then focus on the long-run average problem and show that the optimal static policy performs as well as the optimal dynamic policy when the buffer size at station 1 becomes large, there are no holding costs, and the arrival rate is either small or large. We learn from numerical results that for systems with small arrival rates and no holding cost, the optimal static policy produces a gain quite close to the optimal gain even when the buffer at station 1 is small. On the other hand, for systems with arrival rates that are not small, there are cases where the optimal dynamic policy performs much better than the optimal static policy.

  相似文献   

8.
In this note, we consider a variation of the economic order quantity (EOQ) model where cumulative holding cost is a nonlinear function of time. This problem has been studied by Weiss [Weiss, H., 1982. Economic order quantity models with nonlinear holding costs. European Journal of Operational Research 9, 56–60], and we here show how it is an approximation of the optimal order quantity for perishable goods, such as milk, and produce, sold in small to medium size grocery stores where there are delivery surcharges due to infrequent ordering, and managers frequently utilize markdowns to stabilize demand as the product’s expiration date nears. We show how the holding cost curve parameters can be estimated via a regression approach from the product’s usual holding cost (storage plus capital costs), lifetime, and markdown policy. We show in a numerical study that the model provides significant improvement in cost vis-à-vis the classic EOQ model, with a median improvement of 40%. This improvement is more significant for higher daily demand rate, lower holding cost, shorter lifetime, and a markdown policy with steeper discounts.  相似文献   

9.
We consider a multi-item two-echelon spare part inventory system in which the central warehouse operates under an (nQ,?R) policy and the local warehouses implement order-up-to S policy, each facing a compound Poisson demand. The objective is to find the policy parameters minimizing expected system-wide inventory holding and fixed ordering costs subject to an aggregate mean response time constraint at each warehouse. In this paper, we propose four alternative approximations for the steady state performance of the system; and extend a heuristic and a lower bound proposed under Poisson demand assumption to the compound Poisson setting. In a computational study, we show that the performances of the approximations, the heuristic, and the lower bound are quite satisfactory; and the relative cost saving of setting an aggregate service level rather than individually for each part is quite high.  相似文献   

10.
We consider a two-stage tandem queueing network where jobs from station 1 join station 2 with a certain probability. Each job incurs a linear holding cost, different for each station. Each station is attended by a dedicated server, and there is an additional server that is either constrained to serve in station 1 or can serve in both stations. Assuming no switching or other operating costs for the additional server, we seek an allocation strategy that minimizes expected holding costs. For a clearing system we show that the optimal policy is characterized by a switching curve for which we provide a lower bound on its slope. We also specify a subset of the state space where the optimal policy can be explicitly determined.  相似文献   

11.
Oligopolies in which firms have different costs of production have been relatively under-studied. In contrast to models with symmetric costs, some firms may be inactive in equilibrium. (With symmetric costs, the results trivialize to all firms active or all firms inactive.) We concentrate on the linear demand structure with constant marginal but asymmetric costs. In static one-period models, we compare the number of active firms, i.e. the number of firms producing a positive quantity in equilibrium, across four different models of oligopoly: Cournot and Bertrand with homogeneous or differentiated goods. When firms have different costs, we show that, for fixed good type, Cournot always results in more active firms than Bertrand. Moreover, with a fixed market type, differentiated goods result in more active firms than homogeneous goods. In dynamic models, asymmetric costs induce different entry times into the market. We illustrate with a model of energy production in which multiple producers from costly but inexhaustible alternative sources such as solar or wind compete in a Cournot market against an oil producer with exhaustible supply.  相似文献   

12.
Companies that maintain capital goods (e.g., airplanes or power plants) often face high costs, both for holding spare parts and due to downtime of their technical systems. These costs can be reduced by pooling common spare parts between multiple companies in the same region, but managers may be unsure about how to share the resulting costs or benefits in a fair way that avoids free riders. To tackle this problem, we study several players, each facing a Poisson demand process for an expensive, low-usage item. They share a stock point that is controlled by a continuous-review base stock policy with full backordering under an optimal base stock level. Costs consist of penalty costs for backorders and holding costs for on-hand stock. We propose to allocate the total costs proportional to players’ demand rates. Our key result is that this cost allocation rule satisfies many appealing properties: it makes all separate participants and subgroups of participants better off, it stimulates growth of the pool, it can be easily implemented in practice, and it induces players to reveal their private information truthfully. To obtain these game theoretical results, we exploit novel structural properties of the cost function in our (S − 1, S) inventory model.  相似文献   

13.
We consider a Markovian queueing system with N heterogeneous service facilities, each of which has multiple servers available, linear holding costs, a fixed value of service and a first-come-first-serve queue discipline. Customers arriving in the system can be either rejected or sent to one of the N facilities. Two different types of control policies are considered, which we refer to as ‘selfishly optimal’ and ‘socially optimal’. We prove the equivalence of two different Markov Decision Process formulations, and then show that classical M/M/1 queue results from the early literature on behavioural queueing theory can be generalized to multiple dimensions in an elegant way. In particular, the state space of the continuous-time Markov process induced by a socially optimal policy is contained within that of the selfishly optimal policy. We also show that this result holds when customers are divided into an arbitrary number of heterogeneous classes, provided that the service rates remain non-discriminatory.  相似文献   

14.
We consider the dynamic scheduling of a two-part-type make-to-stock production system using the model of Wein [12]. Exogenous demand for each part type is met from finished goods inventory; unmet demand is backordered. The control policy determines which part type, if any, to produce at each moment; complete flexibility is assumed. The objective is to minimize average holding and backorder costs. For exponentially distributed interarrival and production times, necessary and sufficient conditions are found for a zero-inventory policy to be optimal. This result indicates the economic and production conditions under which a simple make-to-order control is optimal. Weaker results are given for the case of general production times.  相似文献   

15.
We consider a multi-item two-echelon inventory system in which the central warehouse operates under a (Q,R) policy, and the local warehouses implement basestock policy. An exact solution procedure is proposed to find the inventory control policy parameters that minimize the system-wide inventory holding and fixed ordering cost subject to an aggregate mean response time constraint at each facility.  相似文献   

16.
We consider a parallel server system that consists of several customer classes and server pools in parallel. We propose a simple robust control policy to minimize the total linear holding and reneging costs. We show that this policy is asymptotically optimal under the many-server heavy traffic regime for parallel server systems when the service times are only server pool dependent and exponentially distributed. J.G. Dai’s research supported in part by National Science Foundation grants CMMI-0727400 and CNS-0718701, and by an IBM Faculty Award.  相似文献   

17.
We consider scheduling a single server in a two-class M/M/1 queueing system with finite buffers subject to holding costs and rejection costs for rejected jobs. We use dynamic programming to investigate the structural properties of optimal policies. Provided that the delay of serving a job is always less costly than rejecting an arrival, we show that the optimal policy has a monotonic threshold type of switching curve; otherwise, numerical analysis indicates that the threshold structure may not be optimal. Received December 1996/Revised version May 1997  相似文献   

18.
Feinberg  Eugene A.  Kella  Offer 《Queueing Systems》2002,42(4):355-376
We consider an M/G/1 queue with a removable server. When a customer arrives, the workload becomes known. The cost structure consists of switching costs, running costs, and holding costs per unit time which is a nonnegative nondecreasing right-continuous function of a current workload in the system. We prove an old conjecture that D-policies are optimal for the average cost per unit time criterion. It means that for this criterion there is an optimal policy that either runs the server all the time or switches the server off when the system becomes empty and switches it on when the workload reaches or exceeds some threshold D.  相似文献   

19.
We analyze the tradeoff between efficiency and service quality in tandem systems with flexible servers and finite buffers. We reward efficiency by assuming that a revenue is earned each time a job is completed, and penalize poor service quality by incorporating positive holding costs. We study the dynamic assignment of servers to tasks with the objective of maximizing the long-run average profit. For systems of arbitrary size, structured service rates, and linear or nonlinear holding costs, we determine the server assignment policy that maximizes the profit. For systems with two stations, two servers with arbitrary service rates, and linear holding costs, we show that the optimal server assignment policy is of threshold type and determine the value of this threshold as a function of the revenue and holding cost. The threshold can be interpreted as the best possible buffer size, and hence our results prove the equivalence of addressing service quality via a holding cost and via limiting the buffer size. Furthermore, we identify the optimal buffer size when each buffer space comes at a cost. We provide numerical results that suggest that the optimal policy also has a threshold structure for nonlinear holding costs. Finally, for larger systems with arbitrary service rates, we propose effective server assignment heuristics.  相似文献   

20.
In this study, we analyze an inventory system facing stochastic external demands and an autonomous supply (independent return flow) in the presence of fixed disposal costs and positive lead times under a continuous review replenishment–disposal policy. We derive the analytical expressions of the operating characteristics of the system; and, construct the objective function to minimize the total expected costs of ordering, holding, purchasing and disposal per unit time subject to a fill rate constraint. An extensive numerical analysis is conducted to study the sensitivity of the policy parameters and the benefit of employing a policy which allows for disposal of excess stock in this setting. We model the net demand process as the superposition of normally distributed external demand and inflows, which is expressed as a Brownian motion process. Our findings indicate that the disposal option results in considerable savings even (i) in the presence of non-zero fixed disposal costs, (ii) large actual demand rates with high return ratios (resulting in small net demands) and (iii) for moderate return ratios with high demand variability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号