首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Vehicle Routing Problem (VRP) requires the determination of an optimal set of routes for a set of vehicles to serve a set of customers. We deal here with the Capacitated Vehicle Routing Problem (CVRP) where there is a maximum weight or volume that each vehicle can load. We developed an Ant Colony algorithm (ACO) for the CVRP based on the metaheuristic technique introduced by Colorni, Dorigo and Maniezzo. We present preliminary results that show that ant algorithms are competitive with other metaheuristics for solving CVRP.  相似文献   

2.
This paper deals with the Heterogeneous Fleet Vehicle Routing Problem (HFVRP). The HFVRP generalizes the classical Capacitated Vehicle Routing Problem by considering the existence of different vehicle types, with distinct capacities and costs. The objective is to determine the best fleet composition as well as the set of routes that minimize the total costs. The proposed hybrid algorithm is composed by an Iterated Local Search (ILS) based heuristic and a Set Partitioning (SP) formulation. The SP model is solved by means of a Mixed Integer Programming solver that interactively calls the ILS heuristic during its execution. The developed algorithm was tested in benchmark instances with up to 360 customers. The results obtained are quite competitive with those found in the literature and new improved solutions are reported.  相似文献   

3.
The present article examines a vehicle routing problem integrated with two-dimensional loading constraints, called 2L-CVRP. The problem is aimed at generating the optimal route set for satisfying customer demand. In addition, feasible loading arrangements have to be determined for the transported products. To solve 2L-CVRP, we propose a metaheuristic solution approach. The basic advantage of our approach lies at its compact structure, as in total, only two parameters affect the algorithmic performance. To optimize the routing aspects, we propose a local-search method equipped with an effective diversification component based on the regional aspiration criteria. The problem’s loading requirements are tackled by employing a two-dimensional packing heuristic which repetitively attempts to develop feasible loading patterns. These attempts are effectively coordinated via an innovative, simple-structured memory mechanism. The overall solution framework makes use of several memory components for drastically reducing the computational effort required. The performance of our metaheuristic development has been successfully evaluated on benchmark instances considering two distinct versions of the loading constraints. More specifically, the algorithm managed to improve or match the majority of best known solution scores for both problem versions.  相似文献   

4.
In this paper we consider the Cumulative Capacitated Vehicle Routing Problem (CCVRP), which is a variation of the well-known Capacitated Vehicle Routing Problem (CVRP). In this problem, the traditional objective of minimizing total distance or time traveled by the vehicles is replaced by minimizing the sum of arrival times at the customers. We propose a branch-and-cut-and-price algorithm for obtaining optimal solutions to the problem. To the best of our knowledge, this is the first published exact algorithm for the CCVRP. We present computational results based on a set of standard CVRP benchmarks and investigate the effect of modifying the number of vehicles available.  相似文献   

5.
This paper discusses the Two-dimensional Loading Vehicle Routing Problem with Heterogeneous Fleet, Sequential Loading, and Item Rotation (2L-HFVRP-SR). Despite the fact that the 2L-HFVRP-SR can be found in many real-life situations related to the transportation of voluminous items, where heterogeneity of fleets, two-dimensional packing restrictions, sequential loading, and items rotation have to be considered, this rich version of vehicle routing-and-packing problem has been rarely analysed in the literature. Accordingly, this paper contributes to filling the gap by presenting a relatively simple-to-implement algorithm which is able to provide state-of-the-art solutions for such a complex problem in relatively short computational times. The proposed algorithm integrates inside an Iterated Local Search framework, biased-randomized versions of both vehicle routing and packing heuristics. The efficiency of the proposed algorithm is validated throughout an extensive set of computational tests.  相似文献   

6.
In this paper, we propose a hybrid Granular Tabu Search algorithm to solve the Multi-Depot Vehicle Routing Problem (MDVRP). We are given on input a set of identical vehicles (each having a capacity and a maximum duration), a set of depots, and a set of customers with deterministic demands and service times. The problem consists of determining the routes to be performed to fulfill the demand of the customers by satisfying, for each route, the associated capacity and maximum duration constraints. The objective is to minimize the sum of the traveling costs related to the performed routes. The proposed algorithm is based on a heuristic framework previously introduced by the authors for the solution of the Capacitated Location Routing Problem (CLRP). The algorithm applies a hybrid Granular Tabu Search procedure, which considers different neighborhoods and diversification strategies, to improve the initial solution obtained by a hybrid procedure. Computational experiments on benchmark instances from the literature show that the proposed algorithm is able to produce, within short computing time, several best solutions obtained by the previously published methods and new best solutions.  相似文献   

7.
The Multi-Compartment Vehicle Routing Problem involves clients with a demand for different products and vehicles with several compartments to co-transport these commodities. We present a local search procedure that explores well-known moves (2-opt, cross, exchange, relocate), and exploits the mechanisms of neighbour lists and marking to speed up the searches. We combine the procedure with the Guided Local Search meta-heuristic to improve solution quality. Extensive computational results are reported to uncover when co-distribution by vehicles with multiple compartments is better than separate distribution with un-partitioned trucks. Sensitivities in key problem parameters including, client density and location of the depot, vehicle capacity, client demand and number of commodities are investigated.  相似文献   

8.
This paper addresses an important combination of three-dimensional loading and vehicle routing, known as the Three-Dimensional Loading Capacitated Vehicle Routing Problem. The problem calls for the combined optimization of the loading of freight into vehicles and the routing of vehicles along a road network, with the aim of serving customers with minimum traveling cost. Despite its clear practical relevance in freight distribution, the literature on this problem is very limited. This is because of its high combinatorial complexity.  相似文献   

9.
4OR - The Capacitated Vehicle Routing Problem (CVRP) is a classical combinatorial optimization problem that aims to serve a set of customers, using a set of identical vehicles, satisfying the...  相似文献   

10.
The two-dimensional loading heterogeneous fleet vehicle routing problem (2L-HFVRP) is a variant of the classical vehicle routing problem in which customers are served by a heterogeneous fleet of vehicles. These vehicles have different capacities, fixed and variable operating costs, length and width in dimension, and two-dimensional loading constraints. The objective of this problem is to minimize transportation cost of designed routes, according to which vehicles are used, to satisfy the customer demand. In this study, we proposed a simulated annealing with heuristic local search (SA_HLS) to solve the problem and the search was then extended with a collection of packing heuristics to solve the loading constraints in 2L-HFVRP. To speed up the search process, a data structure was used to record the information related to loading feasibility. The effectiveness of SA_HLS was tested on benchmark instances derived from the two-dimensional loading vehicle routing problem (2L-CVRP). In addition, the performance of SA_HLS was also compared with three other 2L-CVRP models and four HFVRP methods found in the literature.  相似文献   

11.
In this paper we deal with a generalization of the Vehicle Routing Problem with Time Windows that considers time-dependent travel times and costs. Through several steps we transform this extension into an Asymmetric Capacitated Vehicle Routing Problem, so it can be solved both optimally and heuristically with known codes.  相似文献   

12.
This paper presents a unified exact method for solving an extended model of the well-known Capacitated Vehicle Routing Problem (CVRP), called the Heterogenous Vehicle Routing Problem (HVRP), where a mixed fleet of vehicles having different capacities, routing and fixed costs is used to supply a set of customers. The HVRP model considered in this paper contains as special cases: the Single Depot CVRP, all variants of the HVRP presented in the literature, the Site-Dependent Vehicle Routing Problem (SDVRP) and the Multi-Depot Vehicle Routing Problem (MDVRP). This paper presents an exact algorithm for the HVRP based on the set partitioning formulation. The exact algorithm uses three types of bounding procedures based on the LP-relaxation and on the Lagrangean relaxation of the mathematical formulation. The bounding procedures allow to reduce the number of variables of the formulation so that the resulting problem can be solved by an integer linear programming solver. Extensive computational results over the main instances from the literature of the different variants of HVRPs, SDVRP and MDVRP show that the proposed lower bound is superior to the ones presented in the literature and that the exact algorithm can solve, for the first time ever, several test instances of all problem types considered.   相似文献   

13.
A variable neighborhood search heuristic for periodic routing problems   总被引:1,自引:0,他引:1  
The aim of this paper is to propose a new heuristic for the Periodic Vehicle Routing Problem (PVRP) without time windows. The PVRP extends the classical Vehicle Routing Problem (VRP) to a planning horizon of several days. Each customer requires a certain number of visits within this time horizon while there is some flexibility on the exact days of the visits. Hence, one has to choose the visit days for each customer and to solve a VRP for each day. Our method is based on Variable Neighborhood Search (VNS). Computational results are presented, that show that our approach is competitive and even outperforms existing solution procedures proposed in the literature. Also considered is the special case of a single vehicle, i.e. the Periodic Traveling Salesman Problem (PTSP). It is shown that slight changes of the proposed VNS procedure is also competitive for the PTSP.  相似文献   

14.
The Capacitated Vehicle Routing Problem (CVRP) consists of finding the cheapest way to serve a set of customers with a fleet of vehicles of a given capacity. While serving a particular customer, each vehicle picks up its demand and carries its weight throughout the rest of its route. While costs in the classical CVRP are measured in terms of a given arc distance, the Cumulative Vehicle Routing Problem (CmVRP) is a variant of the problem that aims to minimize total energy consumption. Each arc’s energy consumption is defined as the product of the arc distance by the weight accumulated since the beginning of the route.The purpose of this work is to propose several different formulations for the CmVRP and to study their Linear Programming (LP) relaxations. In particular, the goal is to study formulations based on combining an arc-item concept (that keeps track of whether a given customer has already been visited when traversing a specific arc) with another formulation from the recent literature, the Arc-Load formulation (that determines how much load goes through an arc).Both formulations have been studied independently before – the Arc-Item is very similar to a multi-commodity-flow formulation in Letchford and Salazar-González (2015) and the Arc-Load formulation has been studied in Fukasawa et al. (2016) – and their LP relaxations are incomparable. Nonetheless, we show that a formulation combining the two (called Arc-Item-Load) may lead to a significantly stronger LP relaxation, thereby indicating that the two formulations capture complementary aspects of the problem. In addition, we study how set partitioning based formulations can be combined with these formulations. We present computational experiments on several well-known benchmark instances that highlight the advantages and drawbacks of the LP relaxation of each formulation and point to potential avenues of future research.  相似文献   

15.
Column generation is involved in the current most efficient approaches to routing problems. Set partitioning formulations model routing problems by considering all possible routes and selecting a subset that visits all customers. These formulations often produce tight lower bounds and require column generation for their pricing step. The bounds in the resulting branch-and-price are tighter when elementary routes are considered, but this approach leads to a more difficult pricing problem. Balancing the pricing with route relaxations has become crucial for the efficiency of the branch-and-price for routing problems. Recently, the ng-routes relaxation was proposed as a compromise between elementary and non-elementary routes. The ng-routes are non-elementary routes with the restriction that when following a customer, the route is not allowed to visit another customer that was visited before if they belong to a dynamically computed set. The larger the size of these sets, the closer the ng-route is to an elementary route. This work presents an efficient pricing algorithm for ng-routes and extends this algorithm for elementary routes. Therefore, we address the Shortest Path Problem with Resource Constraint (SPPRC) and the Elementary Shortest Path Problem with Resource Constraint (ESPPRC). The proposed algorithm combines the Decremental State-Space Relaxation technique (DSSR) with completion bounds. We apply this algorithm for the Generalized Vehicle Routing Problem (GVRP) and for the Capacitated Vehicle Routing Problem (CVRP), demonstrating that it is able to price elementary routes for instances up to 200 customers, a result that doubles the size of the ESPPRC instances solved to date.  相似文献   

16.
The Vehicle Routing Problem with Time Windows consists of computing a minimum cost set of routes for a fleet of vehicles of limited capacity visiting a given set of customers with known demand, with the additional constraint that each customer must be visited in a specified time window. We consider the case in which time window constraints are relaxed into “soft” constraints, that is penalty terms are added to the solution cost whenever a vehicle serves a customer outside of his time window. We present a branch-and-price algorithm which is the first exact optimization algorithm for this problem.  相似文献   

17.
In this paper, we study a k-Travelling Repairmen Problem where the objective is to minimize the sum of clients waiting time to receive service. This problem is relevant in applications that involve distribution of humanitarian aid in disaster areas, delivery and collection of perishable products and personnel transportation, where reaching demand points to perform service, fast and fair, is a priority. This paper presents a new mixed integer formulation and a simple and efficient metaheuristic algorithm. The proposed formulation consumes less computational time and allows solving to optimality more than three times larger data instances than the previous formulation published in literature, even outperforming a recently published Branch and Price and Cut algorithm for this problem. The proposed metaheuristic algorithm solved to optimality 386 out of 389 tested instances in a very short computational time. For larger instances, the algorithm was assessed using the best results reported in the literature for the Cumulative Capacitated Vehicle Routing Problem.  相似文献   

18.
This paper presents EVE-OPT, a Hybrid Algorithm based on Genetic Algorithms and Taboo Search for solving the Capacitated Vehicle Routing Problem. Several hybrid algorithms have been proposed in recent years for solving this problem. Despite good results, they usually make use of highly problem-dependent neighbourhoods and complex genetic operators. This makes their application to real instances difficult, as a number of additional constraints need to be considered. The algorithm described here hybridizes two very simple heuristics and introduces a new genetic operator, the Chain Mutation, as well as a new mutation scheme. We also apply a procedure, the k-chain-moves, able to increase the neighbourhood size, thereby improving the quality of the solution with negligible computational effort. Despite its simplicity, EVE-OPT is able to achieve the same results as very complex state-of-the art algorithms.  相似文献   

19.
This paper deals with a study on a variant of the Periodic Vehicle Routing Problem (PVRP). As in the traditional Vehicle Routing Problem, customer locations each with a certain daily demand are given, as well as a set of capacitated vehicles. In addition, the PVRP has a horizon, say T days, and there is a frequency for each customer stating how often within this T-day period this customer must be visited. A solution to the PVRP consists of T sets of routes that jointly satisfy the demand constraints and the frequency constraints. The objective is to minimize the sum of the costs of all routes over the planning horizon. We develop different algorithms solving the instances of the case studied. Using these algorithms we are able to realize considerable cost reductions compared to the current situation.  相似文献   

20.
This paper considers a practical variant of the Vehicle Routing Problem (VRP) known as the Heterogeneous Vehicle Routing Problem with Time Windows and Multiple Products (HVRPTWMP). As the problem is NP-hard, the resolution approach proposed here is a sequential Ant Colony System (ACS)—Tabu Search algorithm. The approach introduces a two pheromone trail strategy to accelerate agents’ (ants) learning process. Its convergence to good solutions is given in terms of fleet size and travel time while completing tours and service to all customers. The proposed procedure uses regency and frequency memories form Tabu Search to further improve the quality of solutions. Experiments are carried out using instances from literature and show the effectiveness of this procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号