首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Let \(n\ge 3, \Omega \) be a bounded, simply connected and semiconvex domain in \({\mathbb {R}}^n\) and \(L_{\Omega }:=-\Delta +V\) a Schrödinger operator on \(L^2 (\Omega )\) with the Dirichlet boundary condition, where \(\Delta \) denotes the Laplace operator and the potential \(0\le V\) belongs to the reverse Hölder class \(RH_{q_0}({\mathbb {R}}^n)\) for some \(q_0\in (\max \{n/2,2\},\infty ]\). Assume that the growth function \(\varphi :\,{\mathbb {R}}^n\times [0,\infty ) \rightarrow [0,\infty )\) satisfies that \(\varphi (x,\cdot )\) is an Orlicz function and \(\varphi (\cdot ,t)\in {\mathbb {A}}_{\infty }({\mathbb {R}}^n)\) (the class of uniformly Muckenhoupt weights). Let \(H_{\varphi ,\,L_{{\mathbb {R}}^n},\,r}(\Omega )\) be the Musielak–Orlicz–Hardy space whose elements are restrictions of elements of the Musielak–Orlicz–Hardy space, associated with \(L_{{\mathbb {R}}^n}:=-\Delta +V\) on \({\mathbb {R}}^n\), to \(\Omega \). In this article, the authors show that the operators \(VL^{-1}_\Omega \) and \(\nabla ^2L^{-1}_\Omega \) are bounded from \(L^1(\Omega )\) to weak-\(L^1(\Omega )\), from \(L^p(\Omega )\) to itself, with \(p\in (1,2]\), and also from \(H_{\varphi ,\,L_{{\mathbb {R}}^n},\,r}(\Omega )\) to the Musielak–Orlicz space \(L^\varphi (\Omega )\) or to \(H_{\varphi ,\,L_{{\mathbb {R}}^n},\,r}(\Omega )\) itself. As applications, the boundedness of \(\nabla ^2{\mathbb {G}}_D\) on \(L^p(\Omega )\), with \(p\in (1,2]\), and from \(H_{\varphi ,\,L_{{\mathbb {R}}^n},\,r}(\Omega )\) to \(L^\varphi (\Omega )\) or to \(H_{\varphi ,\,L_{{\mathbb {R}}^n},\,r}(\Omega )\) itself is obtained, where \({\mathbb {G}}_D\) denotes the Dirichlet Green operator associated with \(L_\Omega \). All these results are new even for the Hardy space \(H^1_{L_{{\mathbb {R}}^n},\,r}(\Omega )\), which is just \(H_{\varphi ,\,L_{{\mathbb {R}}^n},\,r}(\Omega )\) with \(\varphi (x,t):=t\) for all \(x\in {\mathbb {R}}^n\) and \(t\in [0,\infty )\).  相似文献   

2.
In this paper, we establish a multiplicity result of nontrivial weak solutions for the problem \((-\Delta )^{\alpha } u +u= h(u)\)    in \(\Omega _{\lambda }\), \(u=0\)    on \(\partial \Omega _{\lambda }\), where \(\Omega _{\lambda }=\lambda \Omega \), \(\Omega \) is a smooth and bounded domain in \({\mathbb {R}}^N, N>2\alpha \), \(\lambda \) is a positive parameter, \(\alpha \in (0,1)\), \((-\Delta )^{\alpha }\) is the fractional Laplacian and the nonlinear term h(u) has subcritical growth. We use minimax methods, the Ljusternick–Schnirelmann and Morse theories to get multiplicity results depending on the topology of \(\Omega \).  相似文献   

3.
Graham, Hamada, Kohr and Kohr studied the normalized time \(T\) reachable families \(\widetilde{\mathcal {R}}_T(id_{{\mathbb {B}}^n},\Omega )\) of the Loewner differential equation, which are generated by the Carathéodory mappings with values in a subfamily \(\Omega \) of the Carathéodory family \({\mathcal {N}}_A\) for the Euclidean unit ball \({\mathbb {B}}^n\), where \(A\) is a linear operator with \(k_+(A)<2m(A)\) (\(k_+(A)\) is the Lyapunov index of \(A\) and \(m(A)=\min \{\mathfrak {R}\left\langle Az,z\right\rangle \big |z\in {\mathbb {C}}^n,\Vert z\Vert =1\}\)). They obtained some compactness and density results, as generalizations of related results due to Roth, and conjectured that if \(\Omega \) is compact and convex, then \(\widetilde{\mathcal {R}}_T(id_{{\mathbb {B}}^n},\Omega )\) is compact and \(\widetilde{\mathcal {R}}_T(id_{{\mathbb {B}}^n},ex\,\Omega )\) is dense in \(\widetilde{\mathcal {R}}_T(id_{{\mathbb {B}}^n},\Omega )\), where \(ex\,\Omega \) denotes the corresponding set of extreme points and \(T\in [0,\infty ]\). We confirm this, by embedding the Carathéodory mappings in a suitable Bochner space.  相似文献   

4.
We deal with Morrey spaces on bounded domains \(\Omega \) obtained by different approaches. In particular, we consider three settings \(\mathcal {M}_{u,p}(\Omega )\), \(\mathbb {M}_{u,p}(\Omega )\) and \(\mathfrak {M}_{u,p}(\Omega )\), where \(0<p\le u<\infty \), commonly used in the literature, and study their connections and diversities. Moreover, we determine the growth envelopes \(\mathfrak {E}_{\mathsf {G}}(\mathcal {M}_{u,p}(\Omega ))\) as well as \(\mathfrak {E}_{\mathsf {G}}(\mathfrak {M}_{u,p}(\Omega ))\), and obtain some applications in terms of optimal embeddings. Surprisingly, it turns out that the interplay between p and u in the sense of whether \(\frac{n}{u}\ge \frac{1}{p}\) or \(\frac{n}{u} < \frac{1}{p}\) plays a decisive role when it comes to the behaviour of these spaces.  相似文献   

5.
We study the existence problem for a class of nonlinear elliptic equations whose prototype is of the form \(-\Delta _p u = |\nabla u|^p + \sigma \) in a bounded domain \(\Omega \subset \mathbb {R}^n\). Here \(\Delta _p\), \(p>1\), is the standard p-Laplacian operator defined by \(\Delta _p u=\mathrm{div}\, (|\nabla u|^{p-2}\nabla u)\), and the datum \(\sigma \) is a signed distribution in \(\Omega \). The class of solutions that we are interested in consists of functions \(u\in W^{1,p}_0(\Omega )\) such that \(|\nabla u|\in M(W^{1,p}(\Omega )\rightarrow L^p(\Omega ))\), a space pointwise Sobolev multipliers consisting of functions \(f\in L^{p}(\Omega )\) such that
$$\begin{aligned} \int _{\Omega } |f|^{p} |\varphi |^p dx \le C \int _{\Omega } (|\nabla \varphi |^p + |\varphi |^p) dx \quad \forall \varphi \in C^\infty (\Omega ), \end{aligned}$$
for some \(C>0\). This is a natural class of solutions at least when the distribution \(\sigma \) is nonnegative and compactly supported in \(\Omega \). We show essentially that, with only a gap in the smallness constants, the above equation has a solution in this class if and only if one can write \(\sigma =\mathrm{div}\, F\) for a vector field F such that \(|F|^{\frac{1}{p-1}}\in M(W^{1,p}(\Omega )\rightarrow L^p(\Omega ))\). As an important application, via the exponential transformation \(u\mapsto v=e^{\frac{u}{p-1}}\), we obtain an existence result for the quasilinear equation of Schrödinger type \(-\Delta _p v = \sigma \, v^{p-1}\), \(v\ge 0\) in \(\Omega \), and \(v=1\) on \(\partial \Omega \), which is interesting in its own right.
  相似文献   

6.
For the natural two-parameter filtration \(\left( {\mathcal {F}_\lambda }: {\lambda \in P}\right) \) on the boundary of a triangle building, we define a maximal function and a square function and show their boundedness on \(L^p(\Omega _0)\) for \(p \in (1, \infty )\). At the end, we consider \(L^p(\Omega _0)\) boundedness of martingale transforms. If the building is of \({\text {GL}}(3, \mathbb {Q}_p)\), then \(\Omega _0\) can be identified with p-adic Heisenberg group.  相似文献   

7.
We study the discrete spectrum of the Robin Laplacian \(Q^{\Omega }_\alpha \) in \(L^2(\Omega )\), \(u\mapsto -\Delta u, \quad D_n u=\alpha u \text { on }\partial \Omega \), where \(D_n\) is the outer unit normal derivative and \(\Omega \subset {\mathbb {R}}^{3}\) is a conical domain with a regular cross-section \(\Theta \subset {\mathbb {S}}^2\), n is the outer unit normal, and \(\alpha >0\) is a fixed constant. It is known from previous papers that the bottom of the essential spectrum of \(Q^{\Omega }_\alpha \) is \(-\alpha ^2\) and that the finiteness of the discrete spectrum depends on the geometry of the cross-section. We show that the accumulation of the discrete spectrum of \(Q^\Omega _\alpha \) is determined by the discrete spectrum of an effective Hamiltonian defined on the boundary and far from the origin. By studying this model operator, we prove that the number of eigenvalues of \(Q^{\Omega }_\alpha \) in \((-\infty ,-\alpha ^2-\lambda )\), with \(\lambda >0\), behaves for \(\lambda \rightarrow 0\) as
$$\begin{aligned} \dfrac{\alpha ^2}{8\pi \lambda } \int _{\partial \Theta } \kappa _+(s)^2\mathrm {d}s +o\left( \frac{1}{\lambda }\right) , \end{aligned}$$
where \(\kappa _+\) is the positive part of the geodesic curvature of the cross-section boundary.
  相似文献   

8.
Let \(({\mathcal M},g)\) be a smooth compact Riemannian manifold of dimension \(N\ge 2\). We prove the existence of a family \((\Omega _\varepsilon )_{\varepsilon \in (0,\varepsilon _0)}\) of self-Cheeger sets in \(({\mathcal M},g)\). The domains \(\Omega _\varepsilon \subset {\mathcal M}\) are perturbations of geodesic balls of radius \(\varepsilon \) centered at \(p \in {\mathcal M}\), and in particular, if \(p_0\) is a non-degenerate critical point of the scalar curvature of g, then the family \((\partial \Omega _\varepsilon )_{\varepsilon \in (0,\varepsilon _0)}\) constitutes a smooth foliation of a neighborhood of \(p_0\).  相似文献   

9.
Let \(\Omega \) be a bounded domain with smooth boundary in an n-dimensional metric measure space \((\mathbb {R}^n, \langle ,\rangle , e^{-\phi }dv)\) and let \(\mathbf {u}=(u^1, \ldots , u^n)\) be a vector-valued function from \(\Omega \) to \(\mathbb {R}^n\). In this paper, we investigate the Dirichlet eigenvalue problem of a system of equations of the drifting Laplacian: \(\mathbb {L}_{\phi } \mathbf {u} + \alpha [ \nabla (\mathrm {div}\mathbf { u}) -\nabla \phi \mathrm {div} \mathbf {u}]= - \widetilde{\sigma } \mathbf {u}\), in \( \Omega \), and \(u|_{\partial \Omega }=0,\) where \(\mathbb {L}_{\phi } = \Delta - \nabla \phi \cdot \nabla \) is the drifting Laplacian and \(\alpha \) is a nonnegative constant. We establish some universal inequalities for lower order eigenvalues of this problem on the metric measure space \((\mathbb {R}^n, \langle ,\rangle , e^{-\phi }dv)\) and the Gaussian shrinking soliton \((\mathbb {R}^n, \langle ,\rangle _{\mathrm {can}}, e^{-\frac{|x|^2}{4}}dv, \frac{1}{2})\). Moreover, we give an estimate for the upper bound of the second eigenvalue of this problem in terms of its first eigenvalue on the gradient product Ricci soliton \((\Sigma \times \mathbb {R}, \langle ,\rangle , e^{-\frac{\kappa t^2}{2}}dv, \kappa )\), where \( \Sigma \) is an Einstein manifold with constant Ricci curvature \(\kappa \).  相似文献   

10.
We show that the maximal Cheeger set of a Jordan domain \(\Omega \) without necks is the union of all balls of radius \(r = h(\Omega )^{-1}\) contained in \(\Omega \). Here, \(h(\Omega )\) denotes the Cheeger constant of \(\Omega \), that is, the infimum of the ratio of perimeter over area among subsets of \(\Omega \), and a Cheeger set is a set attaining the infimum. The radius r is shown to be the unique number such that the area of the inner parallel set \(\Omega ^r\) is equal to \(\pi r^2\). The proof of the main theorem requires the combination of several intermediate facts, some of which are of interest in their own right. Examples are given demonstrating the generality of the result as well as the sharpness of our assumptions. In particular, as an application of the main theorem, we illustrate how to effectively approximate the Cheeger constant of the Koch snowflake.  相似文献   

11.
Let \(\Omega \subset \mathbb {R}^n\), \(n\ge 2\), be a bounded domain satisfying the separation property. We show that the following conditions are equivalent:
  1. (i)
    \(\Omega \) is a John domain;
     
  2. (ii)
    for a fixed \(p\in (1,\infty )\), the Korn inequality holds for each \(\mathbf {u}\in W^{1,p}(\Omega ,\mathbb {R}^n)\) satisfying \(\int _\Omega \frac{\partial u_i}{\partial x_j}-\frac{\partial u_j}{\partial x_i}\,dx=0\), \(1\le i,j\le n\),
    $$\begin{aligned} \Vert D\mathbf {u}\Vert _{L^p(\Omega )}\le C_K(\Omega , p)\Vert \epsilon (\mathbf {u})\Vert _{L^p(\Omega )}; \qquad (K_{p}) \end{aligned}$$
     
  3. (ii’)
    for all \(p\in (1,\infty )\), \((K_p)\) holds on \(\Omega \);
     
  4. (iii)
    for a fixed \(p\in (1,\infty )\), for each \(f\in L^p(\Omega )\) with vanishing mean value on \(\Omega \), there exists a solution \(\mathbf {v}\in W^{1,p}_0(\Omega ,\mathbb {R}^n)\) to the equation \(\mathrm {div}\,\mathbf {v}=f\) with
    $$\begin{aligned} \Vert \mathbf {v}\Vert _{W^{1,p}(\Omega ,\mathbb {R}^n)}\le C(\Omega , p)\Vert f\Vert _{L^p(\Omega )};\qquad (DE_p) \end{aligned}$$
     
  5. (iii’)
    for all \(p\in (1,\infty )\), \((DE_p)\) holds on \(\Omega \).
     
For domains satisfying the separation property, in particular, for finitely connected domains in the plane, our result provides a geometric characterization of the Korn inequality, and gives positive answers to a question raised by Costabel and Dauge (Arch Ration Mech Anal 217(3):873–898, 2015) and a question raised by Russ (Vietnam J Math 41:369–381, 2013). For the plane, our result is best possible in the sense that, there exist infinitely connected domains which are not John but support Korn’s inequality.
  相似文献   

12.
Let \(\Omega \) be a smooth bounded domain in \(\mathbb R^n\) with \(n\ge 2\), \(W^{1,n}_0(\Omega )\) be the usual Sobolev space on \(\Omega \) and define \(\lambda _1(\Omega ) = \inf \nolimits _{u\in W^{1,n}_0(\Omega )\setminus \{0\}}\frac{\int _\Omega |\nabla u|^n \mathrm{d}x}{\int _\Omega |u|^n \mathrm{d}x}\). Based on the blow-up analysis method, we shall establish the following improved Moser–Trudinger inequality of Tintarev type
$$\begin{aligned} \sup _{u\in W^{1,n}_0(\Omega ), \int _\Omega |\nabla u|^n \mathrm{{d}}x-\alpha \int _\Omega |u|^n \mathrm{{d}}x \le 1} \int _\Omega \exp (\alpha _{n} |u|^{\frac{n}{n-1}}) \mathrm{{d}}x < \infty , \end{aligned}$$
for any \(0 \le \alpha < \lambda _1(\Omega )\), where \(\alpha _{n} = n \omega _{n-1}^{\frac{1}{n-1}}\) with \(\omega _{n-1}\) being the surface area of the unit sphere in \(\mathbb R^n\). This inequality is stronger than the improved Moser–Trudinger inequality obtained by Adimurthi and Druet (Differ Equ 29:295–322, 2004) in dimension 2 and by Yang (J Funct Anal 239:100–126, 2006) in higher dimension and extends a result of Tintarev (J Funct Anal 266:55–66, 2014) in dimension 2 to higher dimension. We also prove that the supremum above is attained for any \(0< \alpha < \lambda _{1}(\Omega )\). (The case \(\alpha =0\) corresponding to the Moser–Trudinger inequality is well known.)
  相似文献   

13.
Professor Andrzej Fryszkowski formulated, at the 2nd Symposium on Nonlinear Analysis in Toruń, September 13–17, 1999, the following problem: given \(\alpha \in (0,1)\), an arbitrary non-empty set \(\Omega \) and a set-valued mapping \(F:\Omega \rightarrow 2^{\Omega }\), find necessary and (or) sufficient conditions for the existence of a (complete) metric d on \(\Omega \) having the property that F is a Nadler set-valued \(\alpha \)-contraction with respect to d. Com?neci (Stud. Univ. Babe?-Bolyai Math. 62:537–542, 2017) provided necessary and sufficient conditions for the existence of a complete and bounded metric d on \(\Omega \) having the property that F is a Nadler set-valued \(\alpha \)-contraction with respect to d, in case that \(\alpha \in (0,\frac{1}{2})\) and there exists \(z\in \Omega \) such that \(F(z)=\{z\}\) . We improve Com?neci’s result by allowing \(\alpha \) to belong to the interval (0, 1). In addition, we provide necessary and sufficient conditions for the existence of a complete and bounded metric d on \(\Omega \) such that F is a Nadler set-valued \(\alpha \)-similarity with respect to d, in case that \(\alpha \in (0,1)\), there exists \(z\in \Omega \) such that \(F(z)=\{z\}\) and F is non-overlapping.  相似文献   

14.
We consider the Laplacian with attractive Robin boundary conditions,
$$\begin{aligned} Q^\Omega _\alpha u=-\Delta u, \quad \dfrac{\partial u}{\partial n}=\alpha u \text { on } \partial \Omega , \end{aligned}$$
in a class of bounded smooth domains \(\Omega \in \mathbb {R}^\nu \); here \(n\) is the outward unit normal and \(\alpha >0\) is a constant. We show that for each \(j\in \mathbb {N}\) and \(\alpha \rightarrow +\infty \), the \(j\)th eigenvalue \(E_j(Q^\Omega _\alpha )\) has the asymptotics
$$\begin{aligned} E_j(Q^\Omega _\alpha )=-\alpha ^2 -(\nu -1)H_\mathrm {max}(\Omega )\,\alpha +{\mathcal O}(\alpha ^{2/3}), \end{aligned}$$
where \(H_\mathrm {max}(\Omega )\) is the maximum mean curvature at \(\partial \Omega \). The discussion of the reverse Faber-Krahn inequality gives rise to a new geometric problem concerning the minimization of \(H_\mathrm {max}\). In particular, we show that the ball is the strict minimizer of \(H_\mathrm {max}\) among the smooth star-shaped domains of a given volume, which leads to the following result: if \(B\) is a ball and \(\Omega \) is any other star-shaped smooth domain of the same volume, then for any fixed \(j\in \mathbb {N}\) we have \(E_j(Q^B_\alpha )>E_j(Q^\Omega _\alpha )\) for large \(\alpha \). An open question concerning a larger class of domains is formulated.
  相似文献   

15.
Let \(\Omega \) be a bounded smooth domain of \(R^{n}\). We study the asymptotic behaviour of the solutions to the equation \(\triangle u-|Du|^{q}=f(u)\) in \(\Omega , 1<q<2,\) which satisfy the boundary condition \(u(x)\rightarrow \infty \) as \(x\rightarrow \partial \Omega \). These solutions are called large or blowup solutions. Near the boundary we give lower and upper bounds for the ratio \(\psi (u)/\delta \), where \(\psi (u) = \int _{u}^{\infty }1/\sqrt{2F}dt\), \(F'=f\), \(\delta =dist(x,\partial \Omega )\) or for the ratio \(u/\delta ^{(2-q)/(1-q)}\). When in particular the ratio \(f/F^{q/2}\)is regular at infinity, we find again known results (Bandle and Giarrusso, in Adv Diff Equ 1, 133–150, 1996; Giarrusso, in Comptes Rendus de l’Acad Sci 331, 777–782 2000).  相似文献   

16.
For a bounded domain \(\Omega \subset {\mathbb R}^m, m\ge 2,\) of class \(C^0\), the properties are studied of fields of ‘good directions’, that is the directions with respect to which \(\partial \Omega \) can be locally represented as the graph of a continuous function. For any such domain there is a canonical smooth field of good directions defined in a suitable neighbourhood of \(\partial \Omega \), in terms of which a corresponding flow can be defined. Using this flow it is shown that \(\Omega \) can be approximated from the inside and the outside by diffeomorphic domains of class \(C^\infty \). Whether or not the image of a general continuous field of good directions (pseudonormals) defined on \(\partial \Omega \) is the whole of \(S^{m-1}\) is shown to depend on the topology of \(\Omega \). These considerations are used to prove that if \(m=2,3\), or if \(\Omega \) has nonzero Euler characteristic, there is a point \(P\in \partial \Omega \) in the neighbourhood of which \(\partial \Omega \) is Lipschitz. The results provide new information even for more regular domains, with Lipschitz or smooth boundaries.  相似文献   

17.
We study the properties of Carnot–Carathéodory spaces attached to a strictly pseudoconvex CR manifold M, in a neighborhood of each point \(x \in M\), versus the pseudohermitian geometry of M arising from a fixed positively oriented contact form \(\theta \) on M. The weak Dirichlet problem for the sublaplacian \(\Delta _b\) on \((M, \theta )\) is solved on domains \(\Omega \subset M\) supporting the Poincaré inequality. The solution to Neumann problem for the sublaplacian \(\Delta _b\) on a \(C^{1,1}\) connected \((\epsilon , \delta )\)-domain \(\Omega \subset {{\mathbb {G}}}\) in a Carnot group (due to Danielli et al. in: Memoirs of American Mathematical Society 2006) is revisited for domains in a CR manifold. As an application we prove discreetness of the Dirichlet and Neumann spectra of \(\Delta _b\) on \(\Omega \subset M\) in a Carnot–Carthéodory complete pseudohermitian manifold \((M, \theta )\).  相似文献   

18.
We are concerned with the existence of infinitely many solutions for the problem \(-\Delta u=|u|^{p-2}u+f\) in \(\Omega \), \(u=u_0\) on \(\partial \Omega \), where \(\Omega \) is a bounded domain in \(\mathbb {R}^N\), \(N\ge 3\). This can be seen as a perturbation of the problem with \(f=0\) and \(u_0=0\), which is odd in u. If \(\Omega \) is invariant with respect to a closed strict subgroup of O(N), then we prove infinite existence for all functions f and \(u_0\) in certain spaces of invariant functions for a larger range of exponents p than known before. In order to achieve this, we prove Lieb–Cwikel–Rosenbljum-type bounds for invariant potentials on \(\Omega \), employing improved Sobolev embeddings for spaces of invariant functions.  相似文献   

19.
20.
We study the higher gradient integrability of distributional solutions u to the equation \({{\mathrm{div}}}(\sigma \nabla u) = 0\) in dimension two, in the case when the essential range of \(\sigma \) consists of only two elliptic matrices, i.e., \(\sigma \in \{\sigma _1, \sigma _2\}\) a.e. in \(\Omega \). In Nesi et al. (Ann Inst H Poincaré Anal Non Linéaire 31(3):615–638, 2014), for every pair of elliptic matrices \(\sigma _1\) and \(\sigma _2\), exponents \(p_{\sigma _1,\sigma _2}\in (2,+\infty )\) and \(q_{\sigma _1,\sigma _2}\in (1,2)\) have been found so that if \(u\in W^{1,q_{\sigma _1,\sigma _2}}(\Omega )\) is solution to the elliptic equation then \(\nabla u\in L^{p_{\sigma _1,\sigma _2}}_{\mathrm{weak}}(\Omega )\) and the optimality of the upper exponent \(p_{\sigma _1,\sigma _2}\) has been proved. In this paper we complement the above result by proving the optimality of the lower exponent \(q_{\sigma _1,\sigma _2}\). Precisely, we show that for every arbitrarily small \(\delta \), one can find a particular microgeometry, i.e., an arrangement of the sets \(\sigma ^{-1}(\sigma _1)\) and \(\sigma ^{-1}(\sigma _2)\), for which there exists a solution u to the corresponding elliptic equation such that \(\nabla u \in L^{q_{\sigma _1,\sigma _2}-\delta }\), but \(\nabla u \notin L^{q_{\sigma _1,\sigma _2}}\). The existence of such optimal microgeometries is achieved by convex integration methods, adapting to the present setting the geometric constructions provided in Astala et al. (Ann Scuola Norm Sup Pisa Cl Sci 5(7):1–50, 2008) for the isotropic case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号