首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We consider weak solutions to the nonlinear boundary value problem (r, (x, u(x)) u′(x))′ = (Fu)′(x) with r(0, u(0)) u′(0) = ku(0), r(L, u(L)) u′(L) = hu(L) and k, h are suitable elements of [0, ∞]. In addition to studying some new boundary conditions, we also relax the constraints on r(x, u) and (Fu)(x). r(x, u) > 0 may have a countable set of jump discontinuities in u and r(x, u)?1?Lq((0, L) × (0, p)). F is an operator from a suitable set of functions to a subset of Lp(0, L) which have nonnegative values. F includes, among others, examples of the form (Fu)(x) = (1 ? H(x ? x0)) u(x0), (Fu)(x) = ∫xLf(y, u(y)) dy where f(y, u) may have a countable set of jump discontinuities in u or F may be chosen so that (Fu)′(x) = ? g(x, u(x)) u′(x) ? q(x) u(x) ? f(x, u(x)) where q is a distributional derivative of an L2(0, L) function.  相似文献   

2.
We prove generalized Hyers-Ulam–Rassias stability of the cubic functional equation f(kx+y)+f(kx?y)=k[f(x+y)+f(x?y)]+2(k 3?k)f(x) for all \(k\in \Bbb{N}\) and the quartic functional equation f(kx+y)+f(kx?y)=k 2[f(x+y)+f(x?y)]+2k 2(k 2?1)f(x)?2(k 2?1)f(y) for all \(k\in \Bbb{N}\) in non-Archimedean normed spaces.  相似文献   

3.
4.
Let A be an n × n matrix; write A = H+iK, where i2=—1 and H and K are Hermitian. Let f(x,y,z) = det(zI?xH?yK). We first show that a pair of matrices over an algebraically closed field, which satisfy quadratic polynomials, can be put into block, upper triangular form, with diagonal blocks of size 1×1 or 2×2, via a simultaneous similarity. This is used to prove that if f(x,y,z) = [g(x,y,z)]n2, where g has degree 2, then for some unitary matrix U, the matrix U1AU is the direct sum of n2 copies of a 2×2 matrix A1, where A1 is determined, up to unitary similarity, by the polynomial g(x,y,z). We use the connection between f(x,y,z) and the numerical range of A to investigate the case where f(x,y,z) has the form (z?αax? βy)r[g(x,y,z)]s, where g(x,y,z) is irreducible of degree 2.  相似文献   

5.
Let r\mathbbR \rho_{\mathbb{R}} be the classical Schrödinger representation of the Heisenberg group and let L \Lambda be a finite subset of \mathbbR ×\mathbbR \mathbb{R} \times \mathbb{R} . The question of when the set of functions {t ? e2 pi y t f(t + x) = (r\mathbbR(x, y, 1) f)(t) : (x, y) ? L} \{t \mapsto e^{2 \pi i y t} f(t + x) = (\rho_{\mathbb{R}}(x, y, 1) f)(t) : (x, y) \in \Lambda\} is linearly independent for all f ? L2(\mathbbR), f 1 0 f \in L^2(\mathbb{R}), f \neq 0 , arises from Gabor analysis. We investigate an analogous problem for locally compact abelian groups G. For a finite subset L \Lambda of G ×[^(G)] G \times \widehat{G} and rG \rho_G the Schrödinger representation of the Heisenberg group associated with G, we give a necessary and in many situations also sufficient condition for the set {rG (x, w, 1)f : (x, w) ? L} \{\rho_G (x, w, 1)f : (x, w) \in \Lambda\} to be linearly independent for all f ? L2(G), f 1 0 f \in L^2(G), f \neq 0 .  相似文献   

6.
Let N′(k) denote the number of coprime integral solutions x, y of y2 = x3 + k. It is shown that lim supk→∞N′(k) ≥ 12.  相似文献   

7.
Оператор Канторович а дляf∈L p(I), I=[0,1], определяе тся соотношением $$P_n (f,x) = (n + 1)\sum\limits_{k = 0}^n {\left( {\begin{array}{*{20}c} n \\ k \\ \end{array} } \right)} x^k (1 - x)^{n - 1} \int\limits_{I_k } {f(t)dt,} $$ гдеI k=[k/(n}+1),(k+1)/(n+ 1)],n∈N. Доказывается, что есл ир>1 иfW p 2 (I), т.е.f абсол ютно непрерывна наI иf″∈L p(I), то $$\left\| {P_n f - f} \right\|_p = O(n^{ - 1} ).$$ Далее, установлено, чт о еслиfL p(I),p>1 и ∥P n f-fр=О(n ?1), тоf∈S, гдеS={ff аб-солютно непрерывна наI, x(1?x)f′(x)=∝ 0 x h(t)dt, гдеh∈L p(I) и ∝ 0 1 h(t)dt=0}. Если жеf∈Lp(I),p>1, то из условия ∥P n(f)?fpL=o(n?1) вытекает, чтоf постоянна почти всюду.  相似文献   

8.
Let L be a lattice of finite length, ξ = (x 1,…, x k )∈L k , and yL. The remoteness r(y, ξ) of y from ξ is d(y, x 1)+?+d(y, x k ), where d stands for the minimum path length distance in the covering graph of L. Assume, in addition, that L is a graded planar lattice. We prove that whenever r(y, ξ) ≤ r(z, ξ) for all zL, then yx 1∨?∨x k . In other words, L satisfies the so-called c 1 -median property.  相似文献   

9.
We present various new inequalities involving the logarithmic mean L(x,y)=(x-y)/(logx-logy) L(x,y)=(x-y)/(\log{x}-\log{y}) , the identric mean I(x,y)=(1/e)(xx/yy)1/(x-y) I(x,y)=(1/e)(x^x/y^y)^{1/(x-y)} , and the classical arithmetic and geometric means, A(x,y)=(x+y)/2 A(x,y)=(x+y)/2 and G(x,y)=?{xy} G(x,y)=\sqrt{xy} . In particular, we prove the following conjecture, which was published in 1986 in this journal. If Mr(x,y) = (xr/2+yr/2)1/r(r 1 0) M_r(x,y)= (x^r/2+y^r/2)^{1/r}(r\neq{0}) denotes the power mean of order r, then $ M_c(x,y)<\frac{1}{2}(L(x,y)+I(x,y)) {(x,y>0,\, x\neq{y})} $ M_c(x,y)<\frac{1}{2}(L(x,y)+I(x,y)) {(x,y>0,\, x\neq{y})} with the best possible parameter c=(log2)/(1+log2) c=(\log{2})/(1+\log{2}) .  相似文献   

10.
We investigate the existence of positive solutions to the singular fractional boundary value problem: $^c\hspace{-1.0pt}D^{\alpha }u +f(t,u,u^{\prime },^c\hspace{-2.0pt}D^{\mu }u)=0$, u′(0) = 0, u(1) = 0, where 1 < α < 2, 0 < μ < 1, f is a Lq‐Carathéodory function, $q > \frac{1}{\alpha -1}$, and f(t, x, y, z) may be singular at the value 0 of its space variables x, y, z. Here $^c \hspace{-1.0pt}D$ stands for the Caputo fractional derivative. The results are based on combining regularization and sequential techniques with a fixed point theorem on cones.  相似文献   

11.
The recent articles of Arutyunov and Greshnov extend the Banach and Hadler Fixed-Point Theorems and the Arutyunov Coincidence-Point Theorem to the mappings of (q1, q2)-quasimetric spaces. This article addresses similar questions for f-quasimetric spaces.Given a function f: R +2 → R+ with f(r1, r2) → 0 as (r1, r2) → (0, 0), an f-quasimetric space is a nonempty set X with a possibly asymmetric distance function ρ: X2 → R+ satisfying the f-triangle inequality: ρ(x, z) ≤ f(ρ(x, y), ρ(y, z)) for x, y, zX. We extend the Banach Contraction Mapping Principle, as well as Krasnoselskii’s and Browder’s Theorems on generalized contractions, to mappings of f-quasimetric spaces.  相似文献   

12.
The oscillatory and asymptotic behavior of solutions of a class of nth order nonlinear differential equations, with deviating arguments, of the form (E, δ) Lnx(t) + δq(t) f(x[g1(t)],…, x[gm(t)]) = 0, where δ = ± 1 and L0x(t) = x(t), Lkx(t) = ak(t)(Lk ? 1x(t))., k = 1, 2,…, n (. = ddt), is examined. A classification of solutions of (E, δ) with respect to their behavior as t → ∞ and their oscillatory character is obtained. The comparisons of (E, 1) and (E, ?1) with first and second order equations of the form y.(t) + c1(t) f(y[g1(t)],…, y[gm(t)]) = 0 and (an ? 1(t)z.(t)). ? c2(t) f(z[g1(t)],…, z[gm(t)]) = 0, respectively, are presented. The obtained results unify, extend and improve some of the results by Graef, Grammatikopoulos and Spikes, Philos and Staikos.  相似文献   

13.
14.
In this paper, we consider the partial difference equation with continuous variables of the form P1z(x + a, y + b) + p2z (x + a, y) + p3z (x, y + b) − p4z (x, y) + P (x, y) z (xτ, yσ) = 0, where P ϵ C(R+ × R+, R+ − {0}), a, b, τ, σ are real numbers and pi (i = 1, 2, 3, 4) are nonnegative constants. Some sufficient conditions for all solutions of this equation to be oscillatory are obtained.  相似文献   

15.
Yong-Zhuo Chen 《Positivity》2012,16(1):97-106
We apply the Thompson’s metric to study the global stability of the equilibium of the following difference equation
yn = \fracf2m+12m+1 (yn-k1r, yn-k2r, ..., yn-k2m+1r)f2m2m+1 (yn-k1r, yn-k2r, ..., yn-k2m+1r),         n = 0,1,2, ?, y_{n} = \frac{f_{2m+1}^{2m+1} (y_{n-k_{1}}^r, y_{n-k_{2}}^r, \dots, y_{n-k_{2m+1}}^r)}{f_{2m}^{2m+1} (y_{n-k_{1}}^r, y_{n-k_{2}}^r, \dots, y_{n-k_{2m+1}}^r)}, \;\;\;\; n = 0,1,2, \ldots,  相似文献   

16.
Denote by span {f 1,f 2, …} the collection of all finite linear combinations of the functionsf 1,f 2, … over ?. The principal result of the paper is the following. Theorem (Full Müntz Theorem in Lp(A) for p ∈ (0, ∞) and for compact sets A ? [0, 1] with positive lower density at 0). Let A ? [0, 1] be a compact set with positive lower density at 0. Let p ∈ (0, ∞). Suppose (λ j ) j=1 is a sequence of distinct real numbers greater than ?(1/p). Then span {x λ1,x λ2,…} is dense in Lp(A) if and only if $\sum\limits_{j = 1}^\infty {\frac{{\lambda _j + \left( {1/p} \right)}}{{\left( {\lambda _j + \left( {1/p} \right)} \right)^2 + 1}} = \infty } $ . Moreover, if $\sum\limits_{j = 1}^\infty {\frac{{\lambda _j + \left( {1/p} \right)}}{{\left( {\lambda _j + \left( {1/p} \right)} \right)^2 + 1}} = \infty } $ , then every function from the Lp(A) closure of {x λ1,x λ2,…} can be represented as an analytic function on {z ∈ ? \ (?∞,0] : |z| < rA} restricted to A ∩ (0, rA) where $r_A : = \sup \left\{ {y \in \mathbb{R}:\backslash ( - \infty ,0]:\left| z \right|< r_A } \right\}$ (m(·) denotes the one-dimensional Lebesgue measure). This improves and extends earlier results of Müntz, Szász, Clarkson, Erdös, P. Borwein, Erdélyi, and Operstein. Related issues about the denseness of {x λ1,x λ2,…} are also considered.  相似文献   

17.
Let f be an L 2-normalized weight zero Hecke-Maaß cusp form of square-free level N, character χ and Laplacian eigenvalue λ≥1/4. It is shown that ‖f? λ N ?1/37, from which the hybrid bound ‖f?λ 1/4(N λ)?δ (for some δ>0) is derived. The first bound holds also for f=y k/2 F where F is a holomorphic cusp form of weight k with the implied constant now depending on k.  相似文献   

18.
For $n \in \mathbb{N}$ , the n-order of an analytic function f in the unit disc D is defined by $$\sigma _{{{M,n}}} (f) = {\mathop {\lim \sup }\limits_{r \to 1^{ - } } }\frac{{\log ^{ + }_{{n + 1}} M(r,f)}} {{ - \log (1 - r)}},$$ where log+ x  =  max{log x, 0}, log + 1 x  =  log + x, log + n+1 x  =  log + log + n x, and M(r, f) is the maximum modulus of f on the circle of radius r centered at the origin. It is shown, for example, that the solutions f of the complex linear differential equation $$f^{{(k)}} + a_{{k - 1}} (z)f^{{(k - 1)}} + \cdots + a_{1} (z)f^{\prime} + a_{0} (z)f = 0,\quad \quad \quad (\dag)$$ where the coefficients are analytic in D, satisfy σ M,n+1(f)  ≤  α if and only if σ M,n (a j )  ≤  α for all j  =  0, ..., k ? 1. Moreover, if q ∈{0, ..., k ? 1} is the largest index for which $\sigma _{M,n} ( a_{q}) = {\mathop {\max }\limits_{0 \leq j \leq k - 1} }{\left\{ {\sigma _{{M,n}} {\left( {a_{j} } \right)}} \right\}}$ , then there are at least k ? q linearly independent solutions f of ( $\dag$ ) such that σ M,n+1(f) = σ M,n (a q ). Some refinements of these results in terms of the n-type of an analytic function in D are also given.  相似文献   

19.
For functions from the Lebesgue space L(?+), we introduce the modified strong dyadic integral J α and the fractional derivative D (α) of order α > 0. We establish criteria for their existence for a given function fL(?+). We find a countable set of eigenfunctions of the operators D (α) and J α, α > 0. We also prove the relations D (α)(J α(f)) = f and J α(D (α)(f)) = f under the condition that $\smallint _{\mathbb{R}_ + } f(x)dx = 0$ . We show the unboundedness of the linear operator $J_\alpha :L_{J_{_\alpha } } \to L(\mathbb{R}_ + )$ , where L J α is its natural domain of definition. A similar assertion is proved for the operator $D^{(\alpha )} :L_{D^{(\alpha )} } \to L(\mathbb{R}_ + )$ . Moreover, for a function fL(?+) and a given point x ∈ ?+, we introduce the modified dyadic derivative d (α)(f)(x) and the modified dyadic integral j α(f)(x). We prove the relations d (α)(J α(f))(x) = f(x) and j α(D (α)(f)) = f(x) at each dyadic Lebesgue point of the function f.  相似文献   

20.
Letf(x) ∈L p[0,1], 1?p? ∞. We shall say that functionf(x)∈Δk (integerk?1) if for anyh ∈ [0, 1/k] andx ∈ [0,1?kh], we have Δ h k f(x)?0. Denote by ∏ n the space of algebraic polynomials of degree not exceedingn and define $$E_{n,k} (f)_p : = \mathop {\inf }\limits_{\mathop {P_n \in \prod _n }\limits_{P_n^{(\lambda )} \geqslant 0} } \parallel f(x) - P_n (x)\parallel _{L_p [0,1]} .$$ We prove that for any positive integerk, iff(x) ∈ Δ k ∩ L p[0, 1], 1?p?∞, then we have $$E_{n,k} (f)_p \leqslant C\omega _2 \left( {f,\frac{1}{n}} \right)_p ,$$ whereC is a constant only depending onk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号