首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
外部流动的Oseen耦合方法,I:Oseen耦合逼近   总被引:1,自引:0,他引:1  
何银年  李开泰 《数学学报》2000,43(6):969-974
这篇文章考虑了具有非齐次边界条件的二维非定常外部Navier-Stokes方程.通过将内部区域的Navier-Stokes方程和外部区域的Oseen方程相耦合,得到了Navier-Stokes问题的逼近问题: Oseen耦合问题,此外,我们证明了 Oseen耦合方程弱解的存在性,唯一性和收敛精度.  相似文献   

2.
Abstract In this paper, we consider the bidimensional exterior unsteady Navier-Stokes equations with nonhomogeneous boundary conditions and present an Oseen coupling problem which approximates the Navier-Stokes problem, obtained by coupling the Navier-Stokes equations in the inner region and the Oseen equations in the outer region. Moreover, we prove the existence, uniqueness and the approximate accuracy of the weak solution of the Oseen coupling equations. Project supported by NSF of China & State Major Key Project of Basic Research  相似文献   

3.
This work deals with the existence of optimal solution and the maximum principle for optimal control problem governed by Navier-Stokes equations with state constraint of pointwise type in 3D. Strong results in 2D are also given.  相似文献   

4.
In this paper, we propose a dimensional splitting method for the three dimensional (3D) rotating Navier-Stokes equations. Assume that the domain is a channel bounded by two surfaces and is decomposed by a series of surfaces ■i into several sub-domains, which are called the layers of the flow. Every interface i between two sub-domains shares the same geometry. After establishing a semi-geodesic coordinate (S-coordinate) system based on ■i , Navier-Stoke equations in this coordinate can be expressed as the sum of two operators, of which one is called the membrane operator defined on the tangent space on ■i , another one is called the bending operator taking value in the normal space on ■i . Then the derivatives of velocity with respect to the normal direction of the surface are approximated by the Euler central difference, and an approximate form of Navier-Stokes equations on the surface ■i is obtained, which is called the two-dimensional three-component (2D-3C) Navier-Stokes equations on a two dimensional manifold. Solving these equations by alternate iteration, an approximate solution to the original 3D Navier-Stokes equations is obtained. In addition, the proof of the existence of solutions to 2D-3C Navier-Stokes equations is provided, and some approximate methods for solving 2D-3C Navier-Stokes equations are presented.  相似文献   

5.
In this paper, we apply the boundary integral method to the linearized rotating Navier-Stokes equations in exterior domain. Introducing some open ball which decomposes the exterior domain into a finite domain and an infinite domain, we obtain a coupled problem by the linearized rotating Navier-Stokes equations in finite domain and a boundary integral equation without using the artificial boundary condition. For the coupled problem, we show the existence and uniqueness of solution. Finally, we study the finite element approximation for the coupled problem and obtain the error estimate between the solution of the coupled problem and its approximation solution.  相似文献   

6.
本文提出了一种求解复杂边界旋转Navier-Stokes方程的微分几何方法及其二度并行算法.此方法可用于求解透平机械内部叶片间流动和飞行器外部绕流等复杂流动问题.假设流动区域可以用一系列光滑曲面■_k,k=1,2,…,K分割为一系列子区域(称作流层),通过应用微分几何的方法,三维N-S算子可以分解为两类算子之和:建立在曲面■_k切空间上"膜算子"和曲面■_k法线方向的"挠曲算子",将挠曲算子应用欧拉中心差商来逼近,由此得到建立在■_k上的"2D-3C"N-S方程.求解2D-3C N-S方程并且反复迭代直到收敛.我们得到"二度并行算法",它是2D-3C N-S方程并行算法与k方向的同时并行.这个算法的优点在于,(1)可以改进由于复杂边界造成的不规则三维网格引起的逼近解的精度;(2)为克服边界层的数值效应,在边界层内可以构造很密的流层,形成三维多尺度的网格,是一个很好的边界层算法;(3)这个方法不同于经典的区域分解算法,这里的每个子区域只需要求解一个"2D-3C"N-S方程,而经典区域分解方法要在每个子区域上求解三维问题.  相似文献   

7.
In this paper, we study a linear and a nonlinear boundary control problems arising from viscous flows. The equations are of nonlinear Navier-Stokes type for the velocity and pressure, of transport-diffusion type for the temperature and the salinity. The essential difficulties are due to the nonlinear nature of a part of the boundary conditions and to the nature of the equations: time-dependent, coupled and nonlinear. The existence and the conditions of the uniqueness of the solution, for the variational problem, are studied. The control is of linear or nonlinear Robin-type and acts on a part of the boundary during a time T. The cost function measures the distance between the observed and the computed vorticity. The existence of an optimal control in the admissible set of states and controls is proved. A first order necessary conditions of optimality are obtained.  相似文献   

8.
1.IntroductionNonlinearGalerkinmethodsaremultilevelschemesforthedissipativeevolutionpartialdifferentialequations.Theycorrespondtothesplittingsoftheunknownu:u=y z)wherethecomponentsareofdifferentorderofmagnitudewithrespecttoaparameterrelatedtothespati...  相似文献   

9.
Summary We consider a mixed finite element approximation of the stationary, incompressible Navier-Stokes equations with slip boundary condition, which plays an important rôle in the simulation of flows with free surfaces and incompressible viscous flows at high angles of attack and high Reynold's numbers. The central point is a saddle-point formulation of the boundary conditions which avoids the well-known Babuka paradox when approximating smooth domains by polyhedrons. We prove that for the new formulation one can use any stable mixed finite element for the Navier-Stokes equations with no-slip boundary condition provided suitable bubble functions on the boundary are added to the velocity space. We obtain optimal error estimates under minimal regularity assumptions for the solution of the continous problem. The techniques apply as well to the more general Navier boundary condition.  相似文献   

10.
This paper is concerned with the free boundary value problem for multi-dimensional Navier-Stokes equations with density-dependent viscosity where the flow density vanishes continuously across the free boundary. Local (in time) existence of a weak solution is established; in particular, the density is positive and the solution is regular away from the free boundary.  相似文献   

11.
We investigate a semi-smooth Newton method for the numerical solution of optimal control problems subject to differential-algebraic equations (DAEs) and mixed control-state constraints. The necessary conditions are stated in terms of a local minimum principle. By use of the Fischer-Burmeister function the local minimum principle is transformed into an equivalent nonlinear and semi-smooth equation in appropriate Banach spaces. This nonlinear and semi-smooth equation is solved by a semi-smooth Newton method. We extend known local and global convergence results for ODE optimal control problems to the DAE optimal control problems under consideration. Special emphasis is laid on the calculation of Newton steps which are given by a linear DAE boundary value problem. Regularity conditions which ensure the existence of solutions are provided. A regularization strategy for inconsistent boundary value problems is suggested. Numerical illustrations for the optimal control of a pendulum and for the optimal control of discretized Navier-Stokes equations conclude the article.  相似文献   

12.
The paper concerns the control of rigid inclusion shapes in elastic bodies with cracks. Cracks are located on the boundary of rigid inclusions and in the bulk. Inequality type boundary conditions are imposed at the crack faces to guarantee mutual non-penetration. Inclusion shapes are considered as control functions. First we provide the problem formulation and analyze the shape sensitivity with respect to geometrical perturbations of the inclusion. Then, based on Griffith criterion, we introduce the cost functional, which measures the shape sensitivity of the problem with respect to the geometry of the inclusion, provided by the energy release rate. We prove existence of optimal shapes for the problem considered.  相似文献   

13.
We study Dirichlet boundary optimal control problems for 2D Boussinesq equations. The existence of the solution of the optimization problem is proved and an optimality system of partial differential equations is derived from which optimal controls and states may be determined. Then, we present some computational methods to get the solution of the optimality system. The iterative algorithms are given explicitly. We also prove the convergence of the gradient algorithm.  相似文献   

14.
The long-time behavior of solutions for an optimal distributed control problem associated with the Boussinesq equations is studied. First, a quasi-optimal solution for the Boussinesq equations is constructed; this quasi-optimal solution possesses the decay (in time) properties. Then, some preliminary estimates for the long-time behavior of all solutions of the Boussinesq equations are derived. Next, the existence of a solution for the optimal control problem is proved. Finally, the long-time decay properties for the optimal solutions is established.  相似文献   

15.
The paper is concerned with the control of the shape of rigid and elastic inclusions and crack paths in elastic bodies. We provide the corresponding problem formulations and analyze the shape sensitivity of such inclusions and cracks with respect to different perturbations. Inequality type boundary conditions are imposed at the crack faces to provide a mutual nonpenetration between crack faces. Inclusion and crack shapes are considered as control functions and control objectives, respectively. The cost functional, which is based on the Griffith rupture criterion, characterizes the energy release rate and provides the shape sensitivity with respect to a change of the geometry. We prove an existence of optimal solutions.  相似文献   

16.
In this paper, an optimal control problem for the stationary Navier-Stokes equations in the presence of state constraints is investigated. Existence of optimal solutions is proved and first order necessary conditions are derived. The regularity of the adjoint state and the state constraint multiplier is also studied. Lipschitz stability of the optimal control, state and adjoint variables with respect to perturbations is proved and a second order sufficient optimality condition for the case of pointwise state constraints is stated.  相似文献   

17.
We give an overview on the solution of the stationary Navier-Stokes equations for non newtonian incompressible fluids established by G. Dias and M.M. Santos (Steady flow for shear thickening fluids with arbitrary fluxes, J. Differential Equations 252 (2012), no. 6, 3873-3898), propose a definition for domains with unbounded curved channels which encompasses domains with an unbounded boundary, domains with nozzles, and domains with a boundary being a punctured surface, and argue on the existence of steady flowfor incompressible fluids with arbitrary fluxes in such domains.  相似文献   

18.
This work is concerned with time-dependent coating flow in a strip . The Navier-Stokes equations are satisfied in the fluid region, the bottom substrate is moving with fixed velocity , and fluid is entering the strip through the upper boundary . The free boundary has the form for , where is the moving contact point. Our objective is to prove that if the initial data are close to those of a stationary solution (the existence of such a solution was established by the authors in an earlier paper) then the time-dependent problem has a unique solution with smooth free boundary, at least for a small time interval. In this Part I we study the linearized problem, about the stationary solution, and obtain sharp estimates for the solution and its derivatives. These estimates will be used in Part II to establish existence and uniqueness for the full nonlinear problem.

  相似文献   


19.
For the d–dimensional reflecting stochastic differential equations (1) with non-smooth boundary and unbounded domain the existence of a strong solution, (weak solution) is obtained under the conditions that the coefficients are less than linear growth and they are non-Lipschitz, (and the diffusion coefficient is non-degenerate, the drift coefficient is bounded and measurable only). Moreover, the Girsanov theorem and the martingale representation theorem with respect to system (1) are also derived. Then by using the Ekeland lemma and the martingale method the existence, necessary and sufficient conditions for an optimal control and an optimal control are obtained. The results are then applied to solve an optimal control problem for a stochastic population model  相似文献   

20.
In this paper, we study the inviscid limit problem for the Navier-Stokes equations of one-dimensional compressible viscous gas on half plane. We prove that if the solution of the inviscid Euler system on half plane is piecewise smooth with a single shock satisfying the entropy condition, then there exist solutions to Navier-Stokes equations which converge to the inviscid solution away from the shock discontinuity and the boundary at an optimal rate of ε1 as the viscosity ε tends to zero.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号