首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a previous paper by the author joint with Baogang XU published in Discrete Math in 2018, we show that every non-planar toroidal graph can be edge partitioned into a planar graph and an outerplanar graph. This edge partition then implies some results in thickness and outerthickness of toroidal graphs. In particular, if each planar graph has outerthickness at most $2$ (conjectured by Chartrand, Geller and Hedetniemi in 1971 and the confirmation of the conjecture was announced by Gon\c{c}alves in 2005), then the outerthickness of toroidal graphs is at most 3 which is the best possible due to $K_7$. In this paper we continue to study the edge partition for projective planar graphs and Klein bottle embeddable graphs. We show that (1) every non-planar but projective planar graph can be edge partitioned into a planar graph and a union of caterpillar trees; and (2) every non-planar Klein bottle embeddable graph can be edge partitioned into a planar graph and a subgraph of two vertex amalgamation of a caterpillar tree with a cycle with pendant edges. As consequences, the thinkness of projective planar graphs and Klein bottle embeddabe graphs are at most $2$, which are the best possible, and the outerthickness of these graphs are at most $3$.  相似文献   

2.
The acyclic subgraph problem can be formulated as follows. Given a digraph with arc weights, find a set of arcs containing no directed cycle and having maximum total weight. We investigate this problem from a polyhedral point of view and determine several classes of facets for the associated acyclic subgraph polytope. We also show that the separation problem for the facet defining dicycle inequalities can be solved in polynomial time. This implies that the acyclic subgraph problem can be solved in polynomial time for weakly acyclic digraphs. This generalizes a result of Lucchesi for planar digraphs.  相似文献   

3.
An even pair in a graph is a pair of vertices such that every chordless path between them has even length. A graph is called perfectly contractile when every induced subgraph can be transformed into a clique through a sequence of even-pair contractions. In this paper we characterize the planar graphs that are perfectly contractile by determining all the minimal forbidden subgraphs. We give a polynomial algorithm for the recognition of perfectly contractile planar graphs.  相似文献   

4.
We find three non-planar graphs which are flow-equivalent to planar graphs. It is also shown that some non-planar graphs are not flow-equivalent to any planar graph.  相似文献   

5.
We introduce the triple crossing number,a variation of the crossing number,of a graph,which is the minimal number of crossing points in all drawings of the graph with only triple crossings.It is defined to be zero for planar graphs,and to be infinite for non-planar graphs which do not admit a drawing with only triple crossings.In this paper,we determine the triple crossing numbers for all complete multipartite graphs which include all complete graphs.  相似文献   

6.
 A graph is a strict-quasi parity (SQP) graph if every induced subgraph that is not a clique contains a pair of vertices with no odd chordless path between them (an “even pair”). We present an O(n 3) algorithm for recognizing planar strict quasi-parity graphs, based on Wen-Lian Hsu's decomposition of planar (perfect) graphs and on the (non-algorithmic) characterization of planar minimal non-SQP graphs given in [9]. Received: September 21, 1998 Final version received: May 9, 2000  相似文献   

7.
The conjecture of Kelmans that any 3-connected non-planar graph with at least six vertices contains a cycle with three pairwise crossing chords is proved. Using this, a refinement of Kuratowski's theorem which also includes the result of Tutte that a graph is planar if and only if every cycle has a bipartite overlap graph is obtained.  相似文献   

8.
In 1956, W.T. Tutte proved that a 4-connected planar graph is hamiltonian. Moreover, in 1997, D.P. Sanders extended this to the result that a 4-connected planar graph contains a hamiltonian cycle through any two of its edges. We prove that a planar graph G has a cycle containing a given subset X of its vertex set and any two prescribed edges of the subgraph of G induced by X if |X|≥3 and if X is 4-connected in G. If X=V(G) then Sanders’ result follows.  相似文献   

9.
A parity subgraph of a graph is a spanning subgraph such that the degrees of each vertex have the same parity in both the subgraph and the original graph. Known results include that every graph has an odd number of minimal parity subgraphs. Define a disparity subgraph to be a spanning subgraph such that each vertex has degrees of opposite parities in the subgraph and the original graph. (Only graphs with all even-order components can have disparity subgraphs). Every even-order spanning tree contains both a unique parity subgraph and a unique disparity subgraph. Moreover, every minimal disparity subgraph is shown to be paired by sharing a spanning tree with an odd number of minimal parity subgraphs, and every minimal parity subgraph is similarly paired with either one or an even number of minimal disparity subgraphs.  相似文献   

10.
11.
Every drawing of a non-planar graph G in the plane induces a planarization, i.e., a planar graph obtained by replacing edge crossings with dummy vertices. In this paper, we consider the relationship between the capacity of a minimum st-cut in a graph G and its crossing minimal planarizations. We show that these capacities need not be equal. On the other hand, we prove that every such planarization can be efficiently transformed into another crossing minimal planarization that preserves the capacity of a minimum st-cut in G. Furthermore, we extend the result to general (reasonable) planarizations.  相似文献   

12.
It is known that a class of graphs defined by a single forbidden induced subgraph G is well-quasi-ordered by the induced subgraph relation if and only if G is an induced subgraph of P4. However, very little is known about well-quasi-ordered classes of graphs defined by more than one forbidden induced subgraph. We conjecture that for any natural number k, there are finitely many minimal classes of graphs defined by k forbidden induced subgraphs which are not well-quasi-ordered by the induced subgraph relation and prove the conjecture for k=2. We explicitly reveal many of the minimal classes defined by two forbidden induced subgraphs which are not well-quasi-ordered and many of those which are well-quasi-ordered by the induced subgraph relation.  相似文献   

13.
We study the threshold for the existence of a spanning maximal planar subgraph in the random graph Gn, p . We show that it is very near p = 1/n? We also discuss the threshold for the existence of a spanning maximal outerplanar subgraph. This is very near p = 1/n½.  相似文献   

14.
The problem of finding a two-connected planar spanning subgraph of maximum weight in a complete edge-weighted graph is important in automatic graph drawing. We investigate the problem from a polyhedral point of view.  相似文献   

15.
We prove that, for every positive integer k, there is an integer N such that every 4-connected non-planar graph with at least N vertices has a minor isomorphic to K4,k, the graph obtained from a cycle of length 2k+1 by adding an edge joining every pair of vertices at distance exactly k, or the graph obtained from a cycle of length k by adding two vertices adjacent to each other and to every vertex on the cycle. We also prove a version of this for subdivisions rather than minors, and relax the connectivity to allow 3-cuts with one side planar and of bounded size. We deduce that for every integer k there are only finitely many 3-connected 2-crossing-critical graphs with no subdivision isomorphic to the graph obtained from a cycle of length 2k by joining all pairs of diagonally opposite vertices.  相似文献   

16.
Chvátal gave a necessary condition for a partition to have a planar realization. It is of interest to find: (i) partitions which satisfy the condition of the theorem but have no planar realization, and also (ii) partitions which satisfy the condition and have only planar realizations. We give a list of all such partitions with 6, 7, 8 and 9 elements. We also give an algorithm for generating all graphs with a given partition, an algorithm for generating all subcompositions of a given composition and some general classes of partitions which have planar realizations only and some which have non-planar realizations only.  相似文献   

17.
We consider two graph invariants that are used as a measure of nonplanarity: the splitting number of a graph and the size of a maximum planar subgraph. The splitting number of a graph G is the smallest integer k⩾0, such that a planar graph can be obtained from G by k splitting operations. Such operation replaces a vertex v by two nonadjacent vertices v1 and v2, and attaches the neighbors of v either to v1 or to v2. We prove that the splitting number decision problem is NP-complete when restricted to cubic graphs. We obtain as a consequence that planar subgraph remains NP-complete when restricted to cubic graphs. Note that NP-completeness for cubic graphs implies NP-completeness for graphs not containing a subdivision of K5 as a subgraph.  相似文献   

18.
A graph is balanced if its clique-matrix contains no edge–vertex incidence matrix of an odd chordless cycle as a submatrix. While a forbidden induced subgraph characterization of balanced graphs is known, there is no such characterization by minimal forbidden induced subgraphs. In this work, we provide minimal forbidden induced subgraph characterizations of balanced graphs restricted to graphs that belong to one of the following graph classes: complements of bipartite graphs, line graphs of multigraphs, and complements of line graphs of multigraphs. These characterizations lead to linear-time recognition algorithms for balanced graphs within the same three graph classes.  相似文献   

19.
The MAXIMUM PLANAR SUBGRAPH problem—given a graphG, find a largest planar subgraph ofG—has applications in circuit layout, facility layout, and graph drawing. No previous polynomial-time approximation algorithm for this NP-Complete problem was known to achieve a performance ratio larger than 1/3, which is achieved simply by producing a spanning tree ofG. We present the first approximation algorithm for MAXIMUM PLANAR SUBGRAPH with higher performance ratio (4/9 instead of 1/3). We also apply our algorithm to find large outerplanar subgraphs. Last, we show that both MAXIMUM PLANAR SUBGRAPH and its complement, the problem of removing as few edges as possible to leave a planar subgraph, are Max SNP-Hard.  相似文献   

20.
Every planar triangulation G has the property that each induced cycle C of length at least 4 in G separates G, but no proper subgraph of C does. This property is trivially shared by all chordal graphs since these contain no such cycles at all. We ask to what extent maximally planar graphs and chordal graphs are unique with this property — or how much larger the class of graphs is that it determines. The answer is given in the form of a characterization of this class in terms of the simplicial decompositions of its elements. The theory of simplicial decompositions appears to be a very interesting, but still largely unexploited, method of characterization in graph theory, which seems tailor-made for problems like the one discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号