首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
The Blow-up Locus of Heat Flows for Harmonic Maps   总被引:5,自引:0,他引:5  
Abstract Let M and N be two compact Riemannian manifolds. Let u k (x, t) be a sequence of strong stationary weak heat flows from M×R + to N with bounded energies. Assume that u ku weakly in H 1, 2(M×R +, N) and that Σt is the blow-up set for a fixed t > 0. In this paper we first prove Σt is an H m−2-rectifiable set for almost all tR +. And then we prove two blow-up formulas for the blow-up set and the limiting map. From the formulas, we can see that if the limiting map u is also a strong stationary weak heat flow, Σt is a distance solution of the (m− 2)-dimensional mean curvature flow [1]. If a smooth heat flow blows-up at a finite time, we derive a tangent map or a weakly quasi-harmonic sphere and a blow-up set ∪t<0Σt× {t}. We prove the blow-up map is stationary if and only if the blow-up locus is a Brakke motion. This work is supported by NSF grant  相似文献   

2.
For a bounded domain Ω ⊂ R n endowed with L -metric g, and a C 5-Riemannian manifold (N, h) ⊂ R k without boundary, let uW 1,2(Ω, N) be a weakly harmonic map, we prove that (1) uC α (Ω, N) for n = 2, and (2) for n ≥ 3, if, in additions, gVMO(Ω) and u satisfies the quasi-monotonicity inequality (1.5), then there exists a closed set Σ ⊂ Ω, with H n-2(Σ) = 0, such that for some α ∈ (0, 1). C. Y. Wang Partially supported by NSF.  相似文献   

3.
In this paper we investigate the degree and the homotopy theory of Orlicz–Sobolev mappings W 1,P (M,N) between manifolds, where the Young function P satisfies a divergence condition and forms a slightly larger space than W 1,n , n=dim M. In particular, we prove that if M and N are compact oriented manifolds without boundary and dim M=dim N=n, then the degree is well defined in W 1,P (M,N) if and only if the universal cover of N is not a rational homology sphere, and in the case n=4, if and only if N is not homeomorphic to S 4.  相似文献   

4.
In this paper, the concept of a finite mass-points system∑N(H(A))(N>n) being in a sphere in an n-dimensional hyperbolic space Hn and a finite mass-points system∑N(S(A))(N>n) being in a hyperplane in an n-dimensional spherical space Sn is introduced, then, the rank of the Cayley-Menger matrix AN(H)(or a AN(S)) of the finite mass-points system∑∑N(S(A))(or∑N(S(A))) in an n-dimensional hyperbolic space Hn (or spherical space Sn) is no more than n 2 when∑N(H(A))(N>n) (or∑N(S(A))(N>n)) are in a sphere (or hyperplane). On the one hand, the Yang-Zhang's inequalities, the Neuberg-Pedoe's inequalities and the inequality of the metric addition in an n-dimensional hyperbolic space Hn and in an n-dimensional spherical space Sn are established by the method of characteristic roots. These are basic inequalities in hyperbolic geometry and spherical geometry. On the other hand, some relative problems and conjectures are brought.  相似文献   

5.
LetM be a compact riemannian manifold,h an odd function such thath(r)/r is non-decreasing with limit 0 at 0. Letf(r)=h(r)-γr and assume there exist non-negative constantsA andB and a realp>1 such thatf(r)>Ar P-B. We prove that any non-negative solutionu ofu ttgu=f(u) onM x ℝ+ satisfying Dirichlet or Neumann boundary conditions on ϖM converges to a (stationary) solution of Δ g Φ=f(Φ) onM with exponential decay of ‖u-Φ‖C 2(M). For solutions with non-constant sign, we prove an homogenisation result for sufficiently small λ; further, we show that for every λ the map (u(0,·),u t(0,·))→(u(t,·), u t(t,·)) defines a dynamical system onW 1/2(M)⊂C(M)×L 2(M) which possesses a compact maximal attractor.   相似文献   

6.
For a ring R and a right R-module M, a submodule N of M is said to be δ-small in M if, whenever N+X=M with M/X singular, we have X=M. Let ℘ be the class of all singular simple modules. Then δ(M)=Σ{ LM| L is a δ-small submodule of M} = Re jm(℘)=∩{ NM: M/N∈℘. We call M δ-coatomic module whenever NM and M/N=δ(M/N) then M/N=0. And R is called right (left) δ-coatomic ring if the right (left) R-module R R(RR) is δ-coatomic. In this note, we study δ-coatomic modules and ring. We prove M=⊕ i=1 n Mi is δ-coatomic if and only if each M i (i=1,…, n) is δ-coatomic.  相似文献   

7.
Letf: (M,g)→(N,g′) be a differentiable map between the riemannian manifoldsM andN, M being compact.K. Uhlenbeck pointed out a functionalE m(f), related to the energy density off, that depends only on the conformal structure ofM. In this paper we prove thatE m(f) is stationary with respect to deformations of the riemannian metric ofM if and only iff is weakly conformal; in this casef provides a local minimum ofE m.  相似文献   

8.
Periodic number for Anosov maps   总被引:3,自引:0,他引:3  
LetX be a compact metric space and letf: X→X be an Anosov map,i.e., an expansive selfmap with the pseudoorbit tracing property (abbr. POTP) (see Lemma 1). IfNn(f) denotes the number of fixed points off n which we name here then-periodic number then we prove in the case asn tends to infinity thatn M ≤Nn(f)≤Hn, whereM andH are two positive integers.  相似文献   

9.
The main result of the paper says, in particular, that ifM is a complete simply connected Riemannian manifold with Ricci curvature bounded from below and without focal points, which is also a hyperbolic metric space in the sense of Gromov, then the top λ of theL 2-spectrum of the Laplace-Beltrami operator Δ is negative, the Martin boundary ofM corresponding to Δ is homeomorphic to the sphere at infinityS(∞), and the harmonic measures onS(∞) have positive Hausdorff dimensions. These generalize the results of [AS], [An1], [Ki], [KL] and [BK]. Moreover, if dimM=2, then in the presence of the other conditions the hyperbolicity is also necessary for λ<0. The machinery consists of a combination of geometrical and probabilistic means. Partially supported by U.S.-Israel BSF. Partially sponsored by the Edmund Landau Center for Research in Mathematical Analysis, supported by the Minerva Foundation (Germany).  相似文献   

10.
Under the assumption of (f, M n ,N 2n−1) being trivial, the classification of immersions homotopic tof: M n N 2n−1 is obtained in many cases. The triviality of (f, M n ,P 2n−1) is proved for anyM n andf. LetM, N be differentiable manifolds of dimensionn and2n−1 respectively. For a mapf: M → N, denote byI[M, N] f the set of regular homotopy classes of immersions homotopic tof. It has been proved in [1] that, whenn>1,I[M, N] f is nonempty for anyf. In this paper we will determine the setI[M, N] f in some cases. For example, ifN=P 2n−1 or more generally, the lens spacesS m 2n−1 =Z m /S 2n−1,M is any orientablen-manifold or nonorientable butn≡0, 1, 3 mod 4, then, for anyf, theI[M, N] f is determined completely. WhenN=R 2n−1, the setI[M, N] of regular homotopy classes of all immersions has been enumerated by James and Thomas in [2] and McClendon in [3] forn>3. Applying our results toN=R 2n−1 we obtain their results again, except for the casen≡2 mod 4 andM nonorientable. Whenn=3, McClendon's results cannot be used. Our results include the casesn=3,M orientable or not (for orientableM, I[M, R5] is known by Wu [4]).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号