首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the Kuramoto model of globally coupled oscillators, partially locked states (PLS) are stationary solutions that capture the emergence of partial synchrony when the interaction strength increases. While PLS have long been considered, existing results on their stability are limited to neutral stability of the linearized dynamics in strong topology or to specific invariant subspaces (obtained via the so‐called Ott‐Antonsen (OA) ansatz) with specific frequency distributions for the oscillators. In the mean‐field limit, the Kuramoto model shows various ingredients of the Landau damping mechanism in the Vlasov equation. This analogy has been a source of inspiration for stability proofs of regular Kuramoto equilibria. In addition, the major mathematical issue with PLS asymptotic stability is that these states consist of heterogeneous and singular measures. Here we establish an explicit criterion for their spectral stability and prove their local asymptotic stability in weak topology for a large class of analytic frequency marginals. The proof strongly relies on a suitable functional space that contains (Fourier transforms of) singular measures, and for which the linearized dynamics is well under control. For illustration, the stability criterion is evaluated in some standard examples. We confirm in particular that no loss of generality results in assuming the OA ansatz. To the best of our knowledge, our result provides the first proof of Landau damping to heterogeneous and irregular equilibria in the absence of dissipation. © 2018 Wiley Periodicals, Inc.  相似文献   

2.
In this paper, we present an asymptotic formation of phase-locked states from the ensemble of Kuramoto oscillators with a symmetric and connected interaction topology. For a limited interaction topology that does not have an all-to-all interaction, Lyapunov type approaches based on phase and frequency diameters do not work due to the lack of completeness. Thus, we employ an energy method together with the connectedness of underlying interaction topologies to determine the complete synchronization estimates. Our synchronization estimation method consists of two parts. First we establish that the uniform boundedness of fluctuations yields the asymptotic formation of phase-locked states using ?ojasiewicz gradient inequality. Second, we show that for the initial configurations lying in the half circle, the uniform boundedness of fluctuations can be derived by a comparison with solutions to the linear Gronwall?s differential inequality for the total phase variance.  相似文献   

3.
We consider the convergence of gradient-type systems with periodic and analytic potentials. The main tool is the celebrated Łojasiewicz inequality which is valid for any analytic function. Our results show that the convergence of such systems with periodic and analytic potentials is unconditional to the initial data; in other words, any trajectory converges to some equilibrium. As direct applications, we can show that any trajectory converges to phase-locked state for the first- and second-order Kuramoto models on a symmetric network with attractive–repulsive forces and identical natural frequencies. In particular, the inertial Kuramoto model with identical oscillators converges to phase-locked state for any initial configuration.  相似文献   

4.
The synchronization of two different chaotic oscillators is studied, based on an open-loop control – the entrainment control. We consider two types of synchronization: complete synchronization and effectively complete synchronization. The sufficient conditions that two different systems can be synchronized by this method is discussed. Furthermore, a hierarchical idea to synchronize multiple chaotic subsystems is proposed.  相似文献   

5.
A network of Kuramoto oscillators with different natural frequencies is optimized for enhanced synchronizability. All node inputs are normalized by the node connectivity and some important properties of the network structure are determined in this case: (i) optimized networks present a strong anti-correlation between natural frequencies of adjacent nodes; (ii) this anti-correlation should be as high as possible since the average path length between nodes is maintained as small as in random networks; and (iii) high anti-correlation is obtained without any relation between nodes natural frequencies and the degree of connectivity. We also propose a network construction model with which it is shown that high anti-correlation and small average paths may be achieved by randomly rewiring a fraction of the links of a totally anti-correlated network, and that these networks present optimal synchronization properties.  相似文献   

6.
We consider a finite number of coupled oscillators on a ring as an adaptation of the Kuramoto model of populations of oscillators. The synchronized solutions are characterized by an integer m, the winding number, and a second integer l, with solutions of type (m, l = 0) being all stable. Following a number of recent works (see below) we indicate how the various solutions emerge as the coupling strength K is varied, presenting a perturbative expression for these for large K. The low K scenario is also briefly outlined, where the onset of synchronization by a tangent bifurcation is explained. The simplest situation involving three oscillators is described, where more than one tangent bifurcations are involved. Immediately before the tangent bifurcation leading to synchronization, the system exhibits the phenomenon of frequency- (or phase) splitting where more than one (usually two) phase clusters are involved. All the synchronized solutions are seen to be entrained by an external periodic driving, provided that the driving frequency is sufficiently close to the frequency of the synchronized population. A perturbative approach is outlined for the construction of the entrained solutions. Under a periodic driving with an appropriately limited detuning, there occurs entrainment of the phase-split solutions as well.  相似文献   

7.
Transition to explosive synchronization is exhibited in networks of Kuramoto oscillators with a positive correlation between the oscillator dynamics and their inner topological structure encoded in the vertex degrees relations, shedding a light over the explosive critical phenomena. Here we study emergence of chimera states for the large amplitude oscillations when degree-frequency correlation is established only for the vertices with the highest degrees. For the strong coupling regime no simultaneous coexistence of coherence and incoherence signatures is observed. The connection between the network dynamics and the range and strength of coupling is elucidated through extensive analytical investigation, presenting realistic simulations of a scale-free neural network of Caenorhabditis elegans.  相似文献   

8.
We consider the Kuramoto model of globally coupled phase oscillators in its continuum limit, with individual frequencies drawn from a distribution with density of class \({C^n}\) (\({n\geq 4}\)). A criterion for linear stability of the uniform stationary state is established which, for basic examples in the literature, is equivalent to the standard condition on the coupling strength. We prove that, under this criterion, the Kuramoto order parameter, when evolved under the full nonlinear dynamics, asymptotically vanishes (with polynomial rate n) for every trajectory issued from a sufficiently small \({C^n}\) perturbation. The proof uses techniques from the Analysis of PDEs and closely follows recent proofs of the nonlinear Landau damping in the Vlasov equation and Vlasov-HMF model.  相似文献   

9.
In this paper, network of stochastic van der Pol oscillators with time-varying delayed coupling is considered. By using graph theory and Lyapunov functional method, the asymptotic boundedness in pth moment of the network is investigated. Moreover, by constructing an appropriate Lyapunov function, sufficient principle in the form of coefficients of network which ensures the asymptotic boundedness is established. Finally, a numerical example is given to show the effectiveness of the proposed criteria.  相似文献   

10.
In this paper, we formulate and investigate the synchronization of stochastic coupled systems via feedback control based on discrete-time state observations (SCSFD). The discrete-time state feedback control is used in the drift parts of response system. Combining Lyapunov method with graph theory, the upper bound of duration between two consecutive state observations is provided. And a global Lyapunov function of SCSFD is presented, which derives some sufficient criteria to guarantee the synchronization of drive–response systems in the sense of mean-square asymptotical synchronization. In addition, the theoretical results are applied to stochastic coupled oscillators and second-order Kuramoto oscillators. Finally, two numerical examples are given to verify the effectiveness of the theoretical results.  相似文献   

11.
We solve a long-standing stability problem for the Kuramoto model of coupled oscillators. This system has attracted mathematical attention, in part because of its applications in fields ranging from neuroscience to condensed-matter physics, and also because it provides a beautiful connection between nonlinear dynamics and statistical mechanics. The model consists of a large population of phase oscillators with all-to-all sinusoidal coupling. The oscillators' intrinsic frequencies are randomly distributed across the population according to a prescribed probability density, here taken to be unimodal and symmetric about its mean. As the coupling between the oscillators is increased, the system spontaneously synchronizes: The oscillators near the center of the frequency distribution lock their phases together and run at the same frequency, while those in the tails remain unlocked and drift at different frequencies. Although this "partially locked" state has been observed in simulations for decades, its stability has never been analyzed mathematically. Part of the difficulty is in formulating a reasonable infinite-N limit of the model. Here we describe such a continuum limit, and prove that the corresponding partially locked state is, in fact, neutrally stable, contrary to what one might have expected. The possible implications of this result are discussed. An erratum to this article is available at .  相似文献   

12.
We consider the local dynamics of the classical Kuramoto–Sivashinsky equation and its generalizations and study the problem of the existence and asymptotic behavior of periodic solutions and tori. The most interesting results are obtained in the so-called infinite-dimensional critical cases. Considering these cases, we construct special nonlinear partial differential equations that play the role of normal forms and whose nonlocal dynamics thus determine the behavior of solutions of the original boundary value problem.  相似文献   

13.
The initial and initial‐boundary value problems for the Kuramoto–Sivashinsky model of “fluid‐solid particles” media are considered. Existence, uniqueness and asymptotic behaviour of strong solutions are proved. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
We study the periodic forced response of a system of two limit cycle oscillators that interact with each other via a time delayed coupling. Detailed bifurcation diagrams in the parameter space of the forcing amplitude and forcing frequency are obtained for various interesting limits using numerical and analytical means. In particular, the effects of the coupling strength, the natural frequency spread of the two oscillators and the time delay parameter on the size and nature of the entrainment domain are delineated. For an appropriate choice of time delay, synchronization can occur with infinitesimal forcing amplitudes even at off-resonant driving. The system is also found to display a nonlinear response on certain critical contours in the space of the coupling strength and time delay. Numerical simulations with a large number of coupled driven oscillators display similar behavior. Time delay offers a novel tuning knob for controlling the system response over a wide range of frequencies and this may have important practical applications.  相似文献   

15.
In this work, we present a novel evidence of the importance of the golden mean criticality of a system of oscillators in agreement with El Naschie’s E-infinity theory. We focus on chaos inhibition in a system of two coupled modified van der Pol oscillators. Depending on the coupling between the two oscillators, the system shows chaotic behavior for different ranges of the coupling parameter. Chaos suppression, as a transition from irregular behavior to a periodical one, is induced by perturbing the system with a harmonic signal with amplitude considerably lower than the value which causes entrainment. The frequency of the perturbation is related to the main frequencies in the spectrum of the freely running system (without perturbation) by the golden mean. We demonstrate that this effect is also obtained for a perturbation with frequency such that the ratio of half the frequency of the first main component in the freely running chaotic spectrum over the frequency of the perturbation is very close (five digits coincidence) to the golden mean. This result is shown to hold for arbitrary values of the coupling parameter in the various ranges of chaotic dynamics of the free running system.  相似文献   

16.
We study networks of coupled phase oscillators and show that network architecture can force relations between average frequencies of the oscillators. The main tool of our analysis is the coupled cell theory developed by Stewart, Golubitsky, Pivato, and Torok, which provides precise relations between network architecture and the corresponding class of ODEs in RM and gives conditions for the flow-invariance of certain polydiagonal subspaces for all coupled systems with a given network architecture. The theory generalizes the notion of fixed-point subspaces for subgroups of network symmetries and directly extends to networks of coupled phase oscillators. For systems of coupled phase oscillators (but not generally for ODEs in RM, where M ≥ 2), invariant polydiagonal subsets of codimension one arise naturally and strongly restrict the network dynamics. We say that two oscillators i and j coevolve if the polydiagonal θi = θj is flow-invariant, and show that the average frequencies of these oscillators must be equal. Given a network architecture, it is shown that coupled cell theory provides a direct way of testing how coevolving oscillators form collections with closely related dynamics. We give a generalization of these results to synchronous clusters of phase oscillators using quotient networks, and discuss implications for networks of spiking cells and those connected through buffers that implement coupling dynamics.  相似文献   

17.
A new phenomenon, the entrainment of limit cycles by chaos, which results from the appearance of cyclic irregular behavior, is discussed. In this study, sensitivity is considered as the main ingredient of chaos to be captured, and the period-doubling cascade is chosen for extension. Theoretical results are supported by simulations and discussions regarding Chua’s oscillators, entrainment of toroidal attractors by chaos, synchronization, and controlling problems. It is demonstrated that the entrainment cannot be considered as generalized synchronization of chaotic systems.  相似文献   

18.
Asymptotic expansions for oscillatory integrals typically depend on the values and derivatives of the integrand at a small number of critical points. We show that using values of the integrand at certain complex points close to the critical points can actually yield a higher asymptotic order approximation to the integral. This superinterpolation property has interesting ramifications for numerical methods based on exploiting asymptotic behaviour. The asymptotic convergence rates of Filon-type methods can be doubled at no additional cost. Numerical steepest descent methods already exhibit this high asymptotic order, but their analyticity requirements can be significantly relaxed. The method can be applied to general oscillators with stationary points as well, through a simple change of variables.  相似文献   

19.
In this paper, the problem of exponential synchronization of quaternion-valued coupled systems based on event-triggered impulsive control is investigated for the first time. It should be pointed out that the coupling strength is quaternion-valued and time-varying, which makes our model more in line with practical models. First, we prove that event-triggered impulsive control can exclude Zeno behavior. Then, based on the Lyapunov method and the graph theory, some sufficient conditions are derived to ensure that quaternion-valued coupled systems reach synchronization. Furthermore, as an application of our theoretical results, exponential synchronization of quaternion-valued Kuramoto oscillators is studied in detail and a synchronization criterion is presented. Finally, some numerical simulations are given to show the effectiveness of our theoretical results.  相似文献   

20.
A method of determining asymptotic expansions for weakly couplednonlinearly perturbed systems of harmonic oscillators with slowlyvarying frequencies is presented. In an example with two oscillators,each one experiences a separate resonance passage that producesa first-order amplitude change. Simultaneously, second-orderadjustments occur to both oscillators. The determination isachieved by carrying the calculations to third order.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号