首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, we introduce a high‐order accurate method for solving one‐space dimensional linear hyperbolic equation. We apply a compact finite difference approximation of fourth order for discretizing spatial derivative of linear hyperbolic equation and collocation method for the time component. The main property of this method additional to its high‐order accuracy due to the fourth order discretization of spatial derivative, is its unconditionally stability. In this technique the solution is approximated by a polynomial at each grid point that its coefficients are determined by solving a linear system of equations. Numerical results show that the compact finite difference approximation of fourth order and collocation method produce a very efficient method for solving the one‐space‐dimensional linear hyperbolic equation. We compare the numerical results of this paper with numerical results of (Mohanty, 3 .© 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2008  相似文献   

2.
This article discusses the spectral collocation method for numerically solving nonlocal problems: one‐dimensional space fractional advection–diffusion equation; and two‐dimensional linear/nonlinear space fractional advection–diffusion equation. The differentiation matrixes of the left and right Riemann–Liouville and Caputo fractional derivatives are derived for any collocation points within any given bounded interval. Several numerical examples with different boundary conditions are computed to verify the efficiency of the numerical schemes and confirm the exponential convergence; the physical simulations for Lévy–Feller advection–diffusion equation and space fractional Fokker–Planck equation with initial δ‐peak and reflecting boundary conditions are performed; and the eigenvalue distributions of the iterative matrix for a variety of systems are displayed to illustrate the stabilities of the numerical schemes in more general cases. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 514–535, 2014  相似文献   

3.
A fluid–particles system of the compressible Navier‐Stokes equations and Vlasov‐Fokker‐Planck equation (including the case of Vlasov equation) in three‐dimensional space is considered in this paper. The coupling arises from a drag force exerted by the fluid onto the particles. We study a Cauchy problem with large data, and establish the existence of global weak solutions through an approximation scheme, energy estimates, and weak convergence. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
We consider an inverse problem to recover a space‐ and time‐dependent relaxation function of heat flux in a three‐dimensional body on the basis of the restriction of the Dirichlet‐to‐Neumann operator of the related equation of heat flow onto a set of Dirichlet data of the form of a product of a fixed time‐dependent coefficient and a free space‐dependent function. Uniqueness of the solution of this inverse problem is proved. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
The present paper is devoted to study the space identification problem for the elliptic‐telegraph differential equation in Hilbert spaces with the self‐adjoint positive definite operator. The main theorem on the stability of the space identification problem for the elliptic‐telegraph differential equation is proved. In applications, theorems on the stability of three source identification problems for one dimensional with nonlocal conditions and multidimensional elliptic‐telegraph differential equations are established.  相似文献   

6.
We present a rigorous derivation of the Ericksen‐Leslie equation starting from the Doi‐Onsager equation by the Hilbert expansion method. The existence of the Hilbert expansion is related to an open question of whether the energy of the Ericksen‐Leslie equation is dissipated. On this point, we show that the energy is dissipated for the Ericksen‐Leslie equation derived from the Doi‐Onsager equation. The most difficult step is to prove a uniform bound for the remainder of the Hilbert expansion. This step is connected to the spectral stability of the linearized Doi‐Onsager operator around a critical point and the lower bound estimate for a bilinear form associated with the linearized operator. By introducing two important auxiliary operators, we can obtain the detailed spectral information for the linearized operator around all the critical points. We establish a precise lower bound of the bilinear form by introducing a five‐dimensional space called the Maier‐Saupe space.© 2015 Wiley Periodicals, Inc.  相似文献   

7.
In this paper, a linearized finite difference scheme is proposed for solving the multi‐dimensional Allen–Cahn equation. In the scheme, a modified leap‐frog scheme is used for the time discretization, the nonlinear term is treated in a semi‐implicit way, and the central difference scheme is used for the discretization in space. The proposed method satisfies the discrete energy decay property and is unconditionally stable. Moreover, a maximum norm error analysis is carried out in a rigorous way to show that the method is second‐order accurate both in time and space variables. Finally, numerical tests for both two‐ and three‐dimensional problems are provided to confirm our theoretical findings.  相似文献   

8.
9.
The expanded mixed covolume method for the two‐dimensional Sobolev equation with convection term is developed and studied. This method uses the lowest‐order Raviart‐Thomas mixed finite element space as the trial function space. By introducing a transfer operator γh which maps the trial function space into the test function space and combining expanded mixed finite element with mixed covolume method, the continuous‐in‐time, discrete‐in‐time expanded mixed covolume schemes are constructed, and optimal error estimates for these schemes are obtained. Numerical results are given to examine the validity and effectiveness of the proposed schemes.© 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

10.
We give a classification of sphere quadrangulations satisfying a condition of non‐negative curvature, following Thurston's classification of sphere triangulations under the same condition. The generic family of quadrangulations is parametrized by the points of positive square‐norm of an integral Gaußian lattice in the six‐dimensional complex Lorentz space. There is a subgroup of automorphisms of acting on this lattice whose orbits parametrize sphere quadrangulations in a one‐to‐one manner. This group acts discretely on the corresponding five‐dimensional complex hyperbolic space; is of finite co‐volume; its ball quotient is the moduli space of unordered 8 points on the Riemann sphere, and also appears in Picard‐Terada‐Deligne‐Mostow list. Both Thurston's lattice and our lattice may be thought of as parametrizations of certain families of subgroups of the modular group; equivalently, of certain families of dessins. These families also parametrize points of a moduli space.  相似文献   

11.
Finite difference scheme to the generalized one‐dimensional sine‐Gordon equation is considered in this paper. After approximating the second order derivative in the space variable by the compact finite difference, we transform the sine‐Gordon equation into an initial‐value problem of a second‐order ordinary differential equation. Then Padé approximant is used to approximate the time derivatives. The resulting fully discrete nonlinear finite‐difference equation is solved by a predictor‐corrector scheme. Both Dirichlet and Neumann boundary conditions are considered in our proposed algorithm. Stability analysis and error estimate are given for homogeneous Dirichlet boundary value problems using energy method. Numerical results are given to verify the condition for stability and convergence and to examine the accuracy and efficiency of the proposed algorithm. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

12.
Dual‐phase‐lagging (DPL) equation with temperature jump boundary condition (Robin's boundary condition) shows promising for analyzing nanoheat conduction. For solving it, development of higher‐order accurate and unconditionally stable (no restriction on the mesh ratio) numerical schemes is important. Because the grid size may be very small at nanoscale, using a higher‐order accurate scheme will allow us to choose a relative coarse grid and obtain a reasonable solution. For this purpose, recently we have presented a higher‐order accurate and unconditionally stable compact finite difference scheme for solving one‐dimensional DPL equation with temperature jump boundary condition. In this article, we extend our study to a two‐dimensional case and develop a fourth‐order accurate compact finite difference method in space coupled with the Crank–Nicolson method in time, where the Robin's boundary condition is approximated using a third‐order accurate compact method. The overall scheme is proved to be unconditionally stable and convergent with the convergence rate of fourth‐order in space and second‐order in time. Numerical errors and convergence rates of the solution are tested by two examples. Numerical results coincide with the theoretical analysis. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1742–1768, 2015  相似文献   

13.
In this article, we consider the finite element method (FEM) for two‐dimensional linear time‐fractional Tricomi‐type equations, which is obtained from the standard two‐dimensional linear Tricomi‐type equation by replacing the first‐order time derivative with a fractional derivative (of order α, with 1 <α< 2 ). The method is based on finite element method for space and finite difference method for time. We prove that the method is unconditionally stable, and the error estimate is presented. The comparison of the FEM results with the exact solutions is made, and numerical experiments reveal that the FEM is very effective. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013  相似文献   

14.
To find some non‐trivial higher‐dimensional integrable models (especially in (3+1) dimensions) is one of the most important problems in non‐linear physics. An efficient deformation method to obtain higher‐dimensional integrable models is proposed. Starting from (2+1)‐dimensional linear wave equation, a (3+1)‐dimensional non‐trivial non‐linear equation is obtained by using a non‐invertible deformation relation. Further, the Painlevé integrability of the resulting model is also proved. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
We present convergence analysis of operator splitting methods applied to the nonlinear Rosenau–Burgers equation. The equation is first splitted into an unbounded linear part and a bounded nonlinear part and then operator splitting methods of Lie‐Trotter and Strang type are applied to the equation. The local error bounds are obtained by using an approach based on the differential theory of operators in Banach space and error terms of one and two‐dimensional numerical quadratures via Lie commutator bounds. The global error estimates are obtained via a Lady Windermere's fan argument. Lastly, a numerical example is studied to confirm the expected convergence order.  相似文献   

16.
Propagation of two‐dimensional nonlinear ion‐acoustic solitary waves and shocks in a dissipative quantum plasma is analyzed. By applying the reductive perturbation theory, the two‐dimensional ion acoustic solitary waves in a dissipative quantum plasma lead to a nonlinear Kadomtsev–Petviashvili–Burgers (KPB) equation. By implementing extended direct algebraic mapping, extended sech‐tanh, and extended direct algebraic sech methods, the ion solitary traveling wave solutions of the two‐dimensional nonlinear KPB equation are investigated. An analytical as well as numerical solution of the two‐dimensional nonlinear KPB equation is obtained and analyzed with the effects of external electric field and ion pressure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
In this article, we introduce a new space‐time spectral collocation method for solving the one‐dimensional sine‐Gordon equation. We apply a spectral collocation method for discretizing spatial derivatives, and then use the spectral collocation method for the time integration of the resulting nonlinear second‐order system of ordinary differential equations (ODE). Our formulation has high‐order accurate in both space and time. Optimal a priori error bounds are derived in the L2‐norm for the semidiscrete formulation. Numerical experiments show that our formulation have exponential rates of convergence in both space and time. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 670–690, 2015  相似文献   

18.
Using the probabilistic Feynman–Kac formula, the existence of solutions of the Schrödinger equation on an infinite dimensional space E is proven. This theorem is valid for a large class of potentials with exponential growth at infinity as well as for singular potentials. The solution of the Schrödinger equation is local with respect to time and space variables. The space E can be a Hilbert space or other more general infinite dimensional spaces, like Banach and locally convex spaces (continuous functions, test functions, distributions). The specific choice of the infinite dimensional space corresponds to the smoothness of the fields to which the Schrödinger equation refers. The results also express an infinite-dimensional Heisenberg uncertainty principle: increasing of the field smoothness implies increasing of divergence of the momentum part of the quantum field Hamiltonian.  相似文献   

19.
In this paper, we prove finite‐time blowup in energy space for the three‐dimensional Klein‐Gordon‐Zakharov (KGZ) system by modified concavity method. We obtain the blow‐up rates of solutions in local and global space, respectively. In addition, by using the energy convergence, we study the subsonic limit of the Cauchy problem for KGZ system and prove that any finite energy solution converges to the corresponding solution of Klein‐Gordon equation in energy space.  相似文献   

20.
This paper is devoted to the analysis of the N‐space dimensional heat equation, subject to Cauchy–Dirichlet boundary conditions. The problem is set in a symmetric conical type domain. More precisely, we look for sufficient conditions on the lateral boundary of the domain, as weak as possible in order to obtain the maximal regularity of the solution in an anisotropic Hilbertian Sobolev space. For this purpose, the domain decomposition method is employed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号